

OptiSystem-MATLAB data interchange model and features

Optical signal data format (1)

Signal type	Data elements	Comments
Sampled	InputPort1.Sampled.Signal	Represents the complex envelope of the optical signal (real/imag) – $1xn$ complex double If there are two polarization states, two rows will be created ($2xn$ complex double)
	InputPort1.Sampled.Time Inputport1.Sampled.Frequency	The time/frequency sampling points for the sampled optical signal (s or Hz) • If the parameter Sampled signal domain = "Time", use InputPort1.Sampled.Time • If the parameter Sampled signal domain = "Frequency", use InputPort1.Sampled.Frequency
	InputPort1.Sampled.CentralFrequency	The center frequency (Hz) of the optical signal
Sampled (Channels)	InputPort1.Channels	 List of wavelength channels entering specified port To access data for a sampled signal (Channel A), use <i>InputPort1.Sampled(A).Signal</i>, etc. To access data for a parameterized signal (Channel A), use <i>InputPort1.Parameterized.Power(A)</i>, etc.
Sampled (Spatial)	InputPort1.Sampled.Spatial.ModeX.Amplitude	Real or complex amplitude of spatial mode(s) – nxn array Note 1: To access Y polarization data, use ModeY in lieu of ModeX Note 2: If more then one mode is present, separate sampled signals will be created for each mode and can be accessed as follows (for Mode A): InputPort1.Sampled(A).Spatial.ModeX.Amplitude
	InputPort1.Sampled.Spatial.ModeX.Properties	String value (describes mode type and index)
	InputPort1.Sampled.Spatial.ModeX.DeltaSpaceX InputPort1.Sampled.Spatial.ModeX.DeltaFrequencyX	X-polarization: Discretization in space (m) or discretization in frequency (1/m)
	InputPort1.Sampled.Spatial.ModeX.DeltaSpaceY InputPort1.Sampled.Spatial.ModeX.DeltaFrequencyY	Y-polarization: Discretization in space (m) or discretization in frequency (1/m)
Parameterized	InputPort1.Parameterized.Power	Average power of parameterized optical signal (W)
	InputPort1.Parameterized.Frequency	Central frequency of parameterized optical signal
	InputPort1.Parameterized.SplittingRatio	Polarization splitting ratio of parameterized optical signal
	InputPort1.Parameterized.Phase	Phase of parameterized optical signal

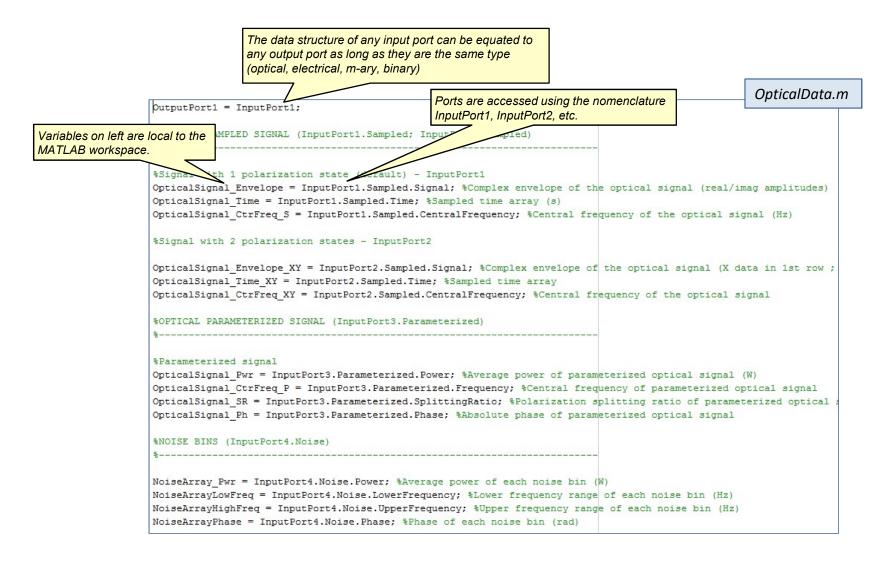
Optical signal data format (2)

Signal type	Data elements	Comments
Noise	InputPort1.Noise.Power	Average power of each noise bin (W)
	InputPort1.Noise.LowerFrequency;	Lower frequency range of each noise bin (Hz)
	InputPort1.Noise.UpperFrequency;	Upper frequency range of each noise bin (Hz)
	InputPort1.Noise.Phase	Phase of each noise bin (Hz)
Individual sample	InputPort1.IndividualSample	Represents the complex amplitude of the optical signal for a single sampling point

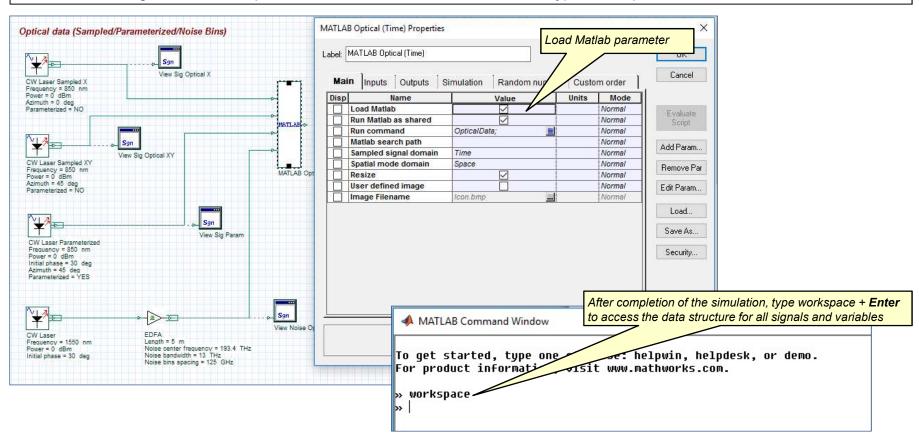
Electrical & Binary/M-ary data formats

		<u>Electrical</u>
Signal type	Data elements	Comments
Sampled	InputPort1.Sampled.Signal	Represents the electrical signal sampled waveform (real/imag) – 1xn complex double
	InputPort1.Sampled.Time Inputport1.Sampled.Frequency	The time/frequency sampling points for the sampled electrical signal (s or Hz) • If the parameter Sampled signal domain = "Time", use InputPort1.Sampled.Time • If the parameter Sampled signal domain = "Frequency", use InputPort1.Sampled.Frequency
Noise	InputPort1.Noise.Signal	Represents the electrical noise sampled waveform (real/imag) $-1xn$ complex double Note: If the noise is combined with the sampled signal (before the MATLAB Component) these arrays will be empty (zero values)
	InputPort1.Noise.Time Inputport1.Noise.Frequency	The time/frequency sampling points for the sampled electrical noise (s or Hz) • If the parameter Sampled signal domain = "Time", use InputPort1.Noise.Time • If the parameter Sampled signal domain = "Frequency", use InputPort1.Noise.Frequency
Individual sample	InputPort1.IndividualSample	Represents the amplitude of the electrical and noise signal for a single sampling point

		Binary & M-ary
Signal type	Data elements	Comments
Binary	InputPort1.Sequence	Represents the sequence of binary bits (0's and 1's)
	InputPort1.BitRate	Bit rate of binary sequence (1/s)
M-ary	InputPort1.Sequence	Represents the sequence of M-ary symbols – 1xn double
	InputPort1.BitRate	Sample rate of M-ary sequence (1/s)

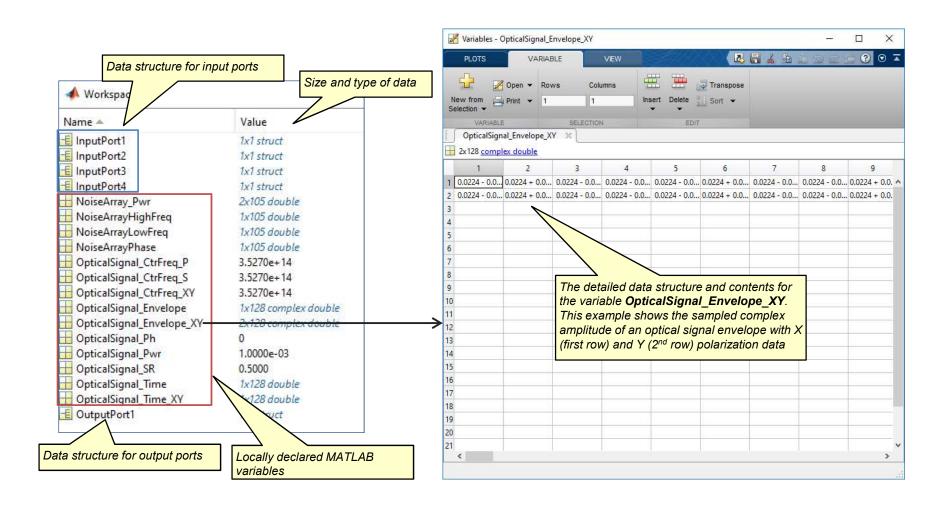


MATLAB m-file example (OpticalData.m)



Accessing the MATLAB workspace

- The data structure for all input and output ports and all variables declared within the MATLAB m-file can be viewed from the MATLAB workspace
- 2. To access the workspace, first select **Load MATLAB** from the **MATLAB Component** and select OK. This action preloads MATLAB (it will stay open unless it is manually closed)
- 3. After running a simulation, open the MATLAB Command Window and type "workspace".



Example of workspace for Optical_Data.osd

To view further details on a data structure, double left click on any variable to open up the Variables window

How to configure output ports

- 1. The data structure for all input ports is automatically created during the simulation, however output port data structures need to be configured from the MATLAB m-file
- Two methods can be used:
 - 1. Set an output port to be equal to an input port
 - 2. Manually set the attributes of the data structure through declarations within the workspace

Method 1: Set output port equal to an input port

```
% Creating an output structure similar to the input
OutputPort1 = InputPort1;
OutputPort2 = InputPort2;
```

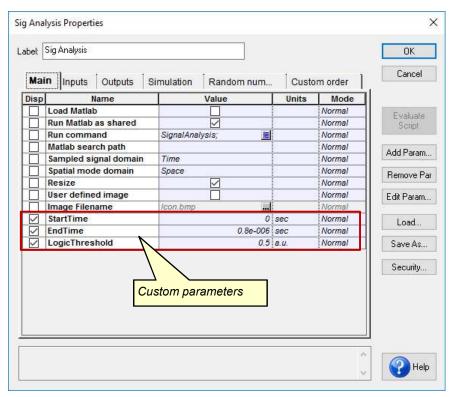
When using this method the data type for the two linked ports **must be the same**

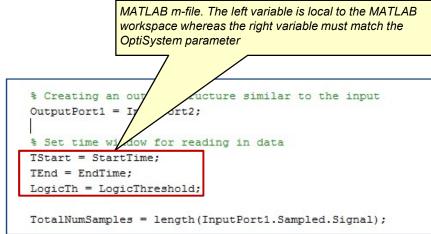
NOTE: Once the data structure is in place its contents can be modified within the MATLAB m-file (for example by performing math operations on the amplitude data). Also the size of the arrays can be changed but the size of the time/frequency and sampled signal arrays associated with the output port must match!.

Method 2: Set output port(s) explicitly

```
OutputPort1.TypeSignal
                                 = 'Electrical':
OutputPort1.Noise
                                 = [];
OutputPort1.IndividualSample
                                 = [];
OutputPort1.Sampled.Signal
                                 = SignalI;
OutputPort1.Sampled.Time
                                 = TimeOS:
OutputPort2.TypeSignal
                                 = 'Electrical':
OutputPort2.Noise
                                 = [];
OutputPort2.IndividualSample
                                 = [];
OutputPort2.Sampled.Signal
                                 = SignalQ;
OutputPort2.Sampled.Time
                                 = TimeOS:
```

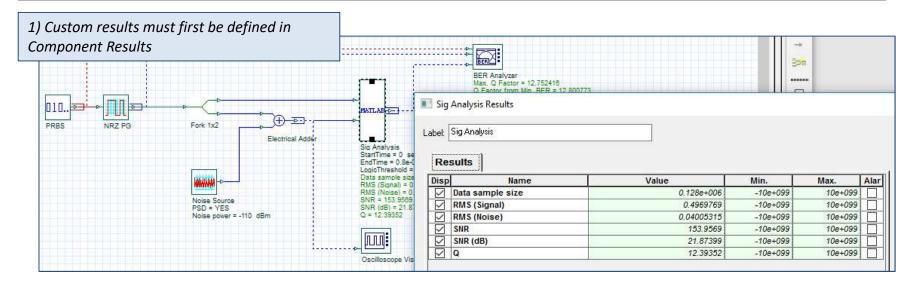
In this example, Output Port 1 and Output Port 2 are fully defined from within the MATLAB workspace. Make sure that the defined signal type matches the port setting for the component





Linking parameters between OptiSystem & MATLAB

Custom parameters can be added to the MATLAB component and accessed within the MATLAB workspace during a simulation (the example project folder can be found under "MATLAB Signal Analysis")



Linking MATLAB variables to Results (1)

Calculations performed in MATLAB can be displayed as a Component Result (the example project folder can be found under "MATLAB Signal Analysis")

2) Calculations performed in MATLAB are exported as a text file (to same folder where OptiSystem project is located)

```
% PRINT RESULT TO TEXT FILE
fid=fopen('C:\Users\mverreault\Desktop\MATLAB Signal Analysis\SignalAnalysis.txt','w');
fprintf(fid,'%E \r\n', DataSampleSize);
fprintf(fid,'%E \r\n', RMS_Signal_Amp);
fprintf(fid,'%E \r\n', RMS_Noise_Amp);
fprintf(fid,'%E \r\n', SNR);
fprintf(fid,'%E \r\n', SNR_dB);
fprintf(fid,'%E \r\n', Q);
fclose(fid);
```


Linking MATLAB variables to Results (2)

3) The OptiSystem Component script feature is then used to access and display the results

```
Option Explicit
Dim file, input, Data1, Data2, Data3, Data4, Data5, Data6
CONST ForReading = 1
'Create a File System Object
Set file = CreateObject("Scripting.FileSystemObject")
'Open the text file
Set input = file.OpenTextFile ("SignalAnalysis.txt", ForReading)
'Step through the lines
Data1 = input.ReadLine
Data2 = input.ReadLine
Data3 = input.ReadLine
Data4 = input.ReadLine
Data5 = input.ReadLine
Data6 = input.ReadLine
                                                                                             MATLAB -- -
Dim ThisComponent
Set ThisComponent = GetThisComponent()
                                                                                             Sig Analysis
ThisComponent.SetResultValue "Data sample size" , Cdbl(Data1)
                                                                                             StartTime = 0 sec
                                                                                             EndTime = 0.8e-006 sec
ThisComponent.SetResultValue "RMS (Signal)" , Cdbl(Data2)
                                                                                             LogicThreshold = 0.5 a.u.
ThisComponent.SetResultValue "RMS (Noise)" , Cdbl(Data3)
                                                                                             Data sample size = 0.128e+008
ThisComponent.SetResultValue "SNR" , Cdbl(Data4)
                                                                                             RMS (Signal) = 0.4989769
                                                                                             RMS (Noise) = 0.04005315
ThisComponent.SetResultValue "SNR (dB)" , Cdbl(Data5)
                                                                                             SNR = 153,9569
ThisComponent.SetResultValue "Q" , Cdbl(Data6)
                                                                                             SNR (dB) = 21.87399
                                                                                             Q = 12.39352
```