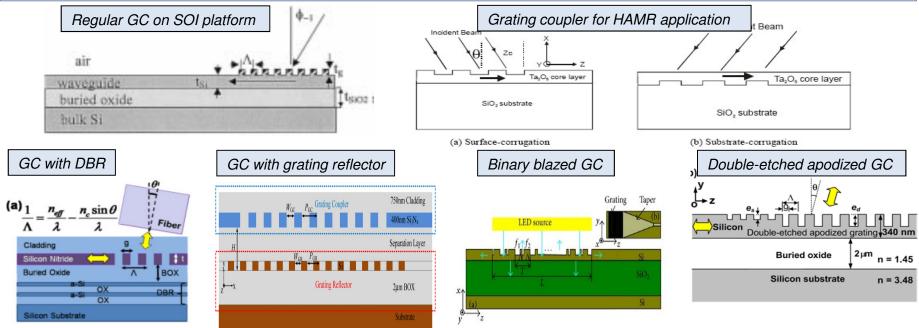


Grating couplers



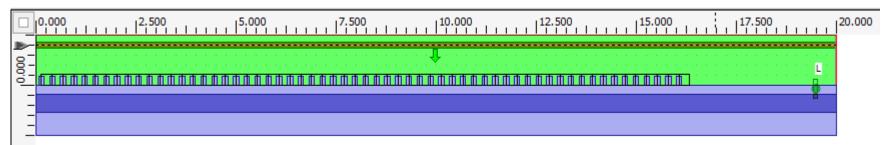
7 Capella Court Nepean, ON, Canada K2E 7X1 +1 (613) 224-4700 www.optiwave.com

Introduction

- Grating coupler (GC) is a widely used I/O device to couple light between fibre (or free-space) and submicrometer waveguides.
- Two typical applications: grating coupler based on CMOS-compatible Silicon-on-Insulator (SOI) platform
 [1] and grating coupler for heat assisted magnetic recording (HAMR) [2].
- Designs of high coupling-efficiency : grating coupler with distributed Bragg reflectors (DBR) [3] or grating reflectors [4], binary blazed grating coupler [5], double-etched apodized grating coupler [6] et al..

[1] S. M. Csutak, et al., "CMOS-Compatible Planar Silicon Waveguide-Grating-Coupler Photodetectors Fabricated on Silicon-on-Insulator (SOI) Substrates," IEEE JQE. VOL. 38, NO. 5, 477-480 (2002)

- [2] Chubing Peng, et al., "Input-grating couplers for narrow Gaussian beam: influence of groove depth," Opt. Express 12, 6481-6490 (2004);
- [3] Huijuan Zhang, et al., "Efficient silicon nitride grating coupler with distributed Bragg reflectors," Opt. Express 22, 21800-21805 (2014)
- [4] Jinghui Zou, et al., "Ultra efficient silicon nitride grating coupler with bottom grating reflector," Opt. Express 23, 26305-26312 (2015)
- [5] Li, H., et al. "Large-area binary blazed grating coupler between nanophotonic waveguide and LED," The Scientific World Journal, 1-6 (2014).
- [6] Chao Li, et al. "CMOS-compatible high efficiency double-etched apodized waveguide grating coupler," Opt. Express 21, 7868-7874 (2013);

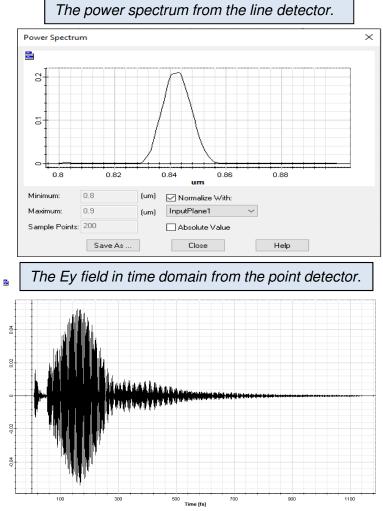


2

2D FDTD simulation

Design of grating coupler

SMGP with Gaussian transverse and a tilting angle


nput Field Properties	X General 2D Transverse Sine-Modulated Gaussian Pulse
○ Continuous Wave Sine-Modulated Gaussian Pulse	Gaussian Transverse
Wavelength (um) 0.85	Center Position (um)
eneral 2D Transverse Sine-Modulated Gaussian Pulse	Full Width at 1/e ² (um) 12 Auto
Input Field Transverse	Tilting Angle (deg) 345 × Auto
◯ Modal	General 2D Transverse Sine-Modulated Gaussian Pulse
Plane Geometry and Wave configuration	☑ Default Value
× Position (um)	FWHM (Sec) 3.7534e-015 * Center Frequency (THz) = 352,697
Positive direction Negative direction	Time Delay (Sec) 6.7561e-015 * FWHM (THz) = 235.131
Initial Phase [deg]	Time Series Spectrum
Label: InputPlane1	
OK Cancel Help	
ptiwave	0 1e-014 2e-014 0 200 400 600 800 100 Time [Sec] Frequency [THz]

3

OptiFDTD Finite-Difference Time-Domain Simulation Design

Simulation results

The intensity image (2D & 3D) of Ey for wavelength 0.843um from the area detector.

4