

Metamaterials & Plasmonics

Exploring the Impact of Rotating Rectangular Plasmonic Nano-hole Arrays on the Transmission Spectra and its Application as a Plasmonic Sensor.

Abstract—Plasmonic nano-structures play a significant role in most recent photonic devices and applications. In this paper, we investigate the optical transmission spectra of rotatable periodic nano-metric apertures with different dimensions. This investigation includes monitoring the modification of both the transmission resonance wavelengths and peak transmittance at different dimensions and orientations of the nano-holes. The obtained results provide better insight to the interaction of light with periodic plasmonic nano-hole arrays. We find that nano-holes dimension/orientation can totally suppress an optical transmission, tune its resonance wavelengths, and change its peak values. Furthermore, we present the surface plasmonic resonance sensing as an application for the reported nano-hole array. [1]

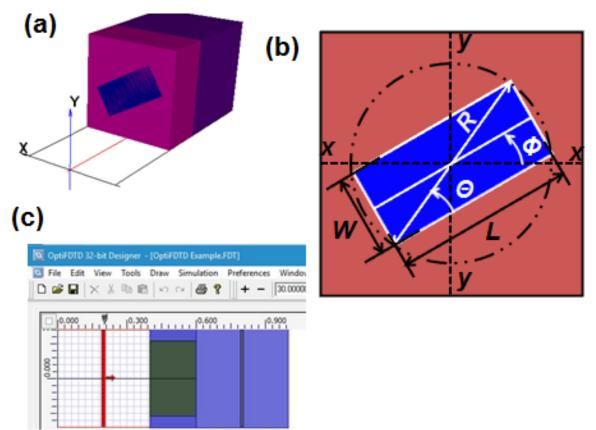


Figure 1: (a) OptiFDTD single cell 3D layout model, (b) A cross section plan view through the rotatable nano-hole, and (c) OptiFDTD layout of the single cell.

Project Layout

The designed plasmonic structure layout is a nano-hole array perforated in gold thin film "sandwiched" between glass substrate and air cladding. The structural periodicity is 425 nm and the gold film thickness is 200 nm.

1. The glass Substrate

	Channel_SiO2
	Store 📩 Default 🛱 Sync 🗙 Cancel ? Help
	Profile name Set default
🕅 n=1.5	Channel_SiO2
Store 🔠 Default 🛱 Sync 🗙 Cancel ? Help	_ 2D profile definition
Name: n=1.5	Material: n=1.5
C Anisotropic C Anisotropic	
Isotropic	3D profile definition
Refractive index: Re: 1.5	Laver1 0.425 0.425 0.0 n=1.5
Sellmeier	Move Down
	Remove
	Layer name: Layer1
	Width: 1 0.425
	Thickness: fx 0.425
	Offset: fr 0.0
Wavelength 1.55 [um] Calculate	Material: n=1.5
	Slanted Walls
	Left Slant Angle: 🔗 90
	Right Slant Angle: 🔗 90
inear Waveguide Properties X	Linear Waveguide Properties
Start End DK	
Horizontal	Start End OK
Expression Offset Position Cancel fx + 0.6 = 0.6 Help	Expression Offset Position Cancel
Vertical ExpressionOffset Position	Expression Offset Position
f x + 0. = 0	f x + 0. = 0
Evaluate	Evaluate
Channel Thickness Tapering	Channel Thickness Tapering
Use Default (Channet/None) Taper: Linear	Usannel I hickness I apering Use Default (Channet None) Taper: Linear
Start: 1€ 0.425000 End: 1€ End: 1€ 0.425000 E	Stat: 1€0.425000
Width: 🔊 🕅 1425	Width: 🔊 0.425
Depth:	Depth: A 0
Labet Substrate	Label: Substrate
Profile: Channel_Si02	Profile: Channel_SiO2 Profiles In Use

2. The gold Film

			Channel_Au	ALE Sume L X Connel L 2 Mile	
Gold_Au_Lorentz_Drude_Mod	del		Store <u>\$</u>	ult ≒Sync X Cancel ? Help	
🕞 Store 🔰 😹 Default 🛱 Syn			Profile name		Set default
1	1. 2		Channel_Au		Default
Name: Gold_Au_Lorentz_Druc	de_Model	🗖 🗖 Default			
C Lorentz Dispersive C Drude	Dispersive 🔅 Lorentz-Drude Dispersiv	re			102
Lorentz Drude Dispersive			Material: Gold	d_Au_Lorentz_Drude_Model	
Lorenz Didde Dispersive		1	- 3D profile definition		
C Use	Wavelength 💿 Use Frequency			idth Thickness Offset Material	Move Up
⊽ Isotropic ε∞ (F/m) [<u>1</u>		Layer1 0.	425 0.425 0.0 Gold_Au_Lorentz_Dru	ude_Model Move Down
Resonance					Remove
Resonance S 1 7.600000e-001	P(rad/s) R(rad/s) 1.371880e+016 0.000000e+000	D(rad/s) 8.052020e+013	Layer name:	ayer1	
2 2.400000e-002	1.371880e+016 6.304880e+014	3.661390e+014	Width:	€ 0.425	
3 1.000000e-002 4 7.100000e-002	1.371880e+016 1.260980e+015 1.371880e+016 4.510650e+015	5.241410e+014 1.321750e+015	Thickness:	€ 0.425	Add
5 6.010000e-001	1.371880e+016 6.538850e+015	3.789010e+015	Offset:	\$ 0.0	Apply
6 4.384000e+000	1.371880e+016 2.023640e+016	3.363620e+015	Material:	old_Au_Lorentz_Drude_Model	✓ <u>C</u> lear
			Right Slant Ang	gle: 🕅 90	
yeguide Properties		×	Right Slant Ang		
		OK			
End			Linear Waveguide Pro	perties	
yeguide Properties End contal ression	Offset Position +∏14 = ∏14	OK Cancel	Linear Waveguide Pro	pertiesOffset	Position C
End ression	0/fset Position + [0.4 = [0.4		Linear Waveguide Pro	pertiesOffset	
End ontal ression	+ 0.4 = 0.4	OK Cancel	Linear Waveguide Pro	perties + 0ffset + 0.6	Position C
End		OK Cancel	Linear Waveguide Pro	perties + 0.6	Position C
End ontal ession	+ 0.4 = 0.4	OK Cancel	Linear Waveguide Pro	perties + 0.6	Position C
End ontal ression	+ 0.4 = 0.4	OK Cancel Help	Linear Waveguide Pro	perties + 0.6	Position C
End contal cal ression	+ 0.4 = 0.4 Offset Position + 0. = 0	OK Cancel Help	Linear Waveguide Pro	perties + 0/fset + 0/fset + 0/fset +	Position 0.6 Position 0
End	+ 0.4 = 0.4	OK Cancel Help	Linear Waveguide Pro	perties + 0ffset + 0.6 0ffset - 0ffset - 0 - 0ffset 	Position 0.6 Position Evaluate
End	+ 0.4 = 0.4 Offset Position + 0. = 0 Evaluate Taper: Linear	OK Cancel Help	Linear Waveguide Pro	perties + 0ffset + 0.6 + 0.6 + 0. 	Position 0.6 Position Evaluate
End	+ 0.4 = 0.4 Offset Position + 0. = 0 Evaluate Taper: Linear	OK Cancel Help	Linear Waveguide Pro	perties + 0ffset + 0.6 0ffset - 0ffset - 0 - 0ffset 	Position 0.6 Position Evaluate
End	+ 0.4 = 0.4 Offset Position + 0. = 0 Evaluate Taper: Linear	OK Cancel Help	Linear Waveguide Pro	perties + 0ffset + 0.6 + 0.6 + 0. 	Position 0.6 Position Evaluate
End ontal cal ression Il Thickness Tapering Jse Default (Channet None)	+ 0.4 = 0.4 Offset Position + 0. = 0 Evaluate Taper: Linear	OK Cancel Help	Linear Waveguide Pro	perties + 0ffset + 0.6 + 0.6 + 0. 	Position 0.6 Position Evaluate
End Contal End Contal cal I Thickness Tapering Jse Default (Channet:None) A 0.425	+ 0.4 = 0.4 Offset Position + 0. = 0 Evaluate Taper: Linear	OK Cancel Help	Linear Waveguide Pro	perties + 0ffset + 0.6 + 0.6 + 0. 	Position 0.6 Position Evaluate

3. The nano-holes

The nano-holes have a rectangular shape and inscribed in identical circles of 326 nm diameter (*D*). The structural periodicity is 425 nm and the gold film thickness is 200 nm. Dimensions of the rectangle structures are determined by unequal scaling angle (θ) and the radius of the reference circular structure. The holes are oriented at angle (Φ) with respect to the radial direction.

$$L = D \cos(\theta)$$
$$W = D \sin(\theta)$$

	📴 Channel_Air 🛛 🗖 🖾
	Store Store Store Store Store Help
Air - •	Profile name Set default
Store Store State Sync X Cancel ? Help	Channel_Air
Name: Air C Isotropic C Anisotropic	2D profile definition
Isotropic Sotropic Sotropic	Material: Air
	3D profile definition
Refractive index:	Layer Name Width Thic Offset Material Move Up
Sellmeier	Layer1 0.425 0.425 0.0 Air Move Down
	<u>Remove</u>
	Layer 1
	<u>Width:</u> ∱ 0.425
Wavelength 1.55 [um] Calculate	Qffset: 1 0.0 Apply
	Material: Air
	Slanted Walls
	Left Slant Angle: 90
	Right Slant Angle: 190
Z (um) A + 0.5 = 0.5 Drientation	User Variable User Function DLL Function User variable declaration Name:
	Expression:
	Value:
pe Configuration	
Block - full definition	Verify Add/Apply
Copy shape planes to user-defined Copy	
tor1 (0, 0, Z)	
(um) £ 02 = 0.2	User Variables User Functions/DLLs
tor2 (X, 0, Z)	User Variable Expression
(um) 🟂 0.326*cos(unequal*PI/180) = 0.230516810E	1 unequal 45 2 PI 3.141592654 Cano
(um) 🗩 0 = 0	3 orientation 45
or3(X,Y,Z)	
(um) <u>f</u> x 0 = 0	
(um) 🟂 0.326*sin(unequal*PI/180) = 0.230516810€	
(um) 🗩 0 = 0	
Hole Clipping Planes	
tenal Air Material In Use	

Design VB script code to scan the unequal scaling and orientation angles

For i = 1 to 13	case 8
select case i	orientation = 30
case 1	unequal = 25
orientation = 0	case 9
unequal = 10	orientation = 60
case 2	unequal = 25
orientation = 0	case 10
unequal = 25	orientation = 90
case 3	unequal = 25
orientation = 0	case 11
unequal = 45	orientation = 15
case 4	unequal = 45
orientation = 0	case 12
unequal = 55	orientation = 30
case 5	unequal = 45
orientation = 30	case 13
unequal = 10	orientation = 45
case 6	unequal = 45
orientation = 60	end select
unequal = 10	ParamMgr.SetParam "unequal", unequal
case 7	ParamMgr.SetParam "orientation",
orientation = 90	orientation
unequal = 10	WGMgr.Sleep 500
	ParamMgr.Simulate
	Next

Define Input Source

In order to realize a broadband simulation on the dispersive gold film, Gaussian modulated electromagnetic plane wave source was used. The continuous waves are centered at 680 nm, linearly polarized in *y*-direction, and convoluted with a Gaussian envelope function. In the time domain, the light pulse has a half width of 0.8×10^{-14} s and an offset time of 0.1×10^{-14} s. The simulation is performed at normal incidence (z-direction) of the plane wave through the nano-hole arrays.

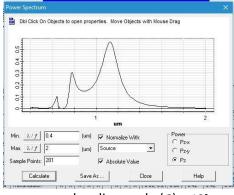
Define observation area

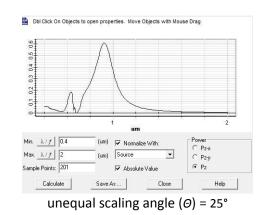
An observation area will perform and calculate the transmission spectral analysis at 400 nm away from the air/Au film interface.

	ponents Recording Data C	omponents		
Center				
Horizontal				
Expression		Offset		Position
f _x		+ 0.8	=	0.8
 ─ Vertical				
Expression		Offset		Position
f.		+ 0.	-	0
Frank				
				Evaluate
Center Depth: 👧 0	2125		-	0.212500
	.2125		=	0.212000
≺Length: <i>f</i> ∗	+	0.425000	-	0.425000
Concert des des concerts and and and		0.425000	-	0.425000
	+	0.423000	- 7	0.423000
r Length: 🖍				
′Length: ∱ ∕				

Simulation parameters and boundary conditions

The simulation cell is 425 nm × 425 nm × 1000 nm in the Cartesian coordinates x, y, and z. An absorbing boundary condition was rendered in the z-direction using anisotropic perfect matching layer, while, periodic boundary conditions were used in the x and y directions. The mesh size is adjusted to be small enough to catch the wave attenuation within the skin depth. As a result, the calculation mesh resolution is set as 5 nm (< 0.1 λ) to get accurate results. The simulation is executed through 12,000 time step for a calculation time of 100 fs.




D Simulation Parameters	Boundary Conditions
Mesh Parameters Mesh Detta X (um) 1000 Number of March Cells X 10 1 40 1 40 1	
	Boundary Conditions
Mesh Delta Y (um) 0.005 Number of Mesh Cells Y 85 Auto Mesh Delta Z (um) 0.01 Number of Mesh Cells Z 100 Auto	-X PBC +X PBC +
The minimum memory requirment is: 111.31M bytes: Advanced w/afer Dimensions: 1.00 um (length) * 0.42 um (width) * 0.42 um (depth)	-Y PBC • +Y PBC •
Time Parameters	·Z APML +Z APML +
Time Step Size: 8.3391023799538e-018 🔽 Auto	
Image: Constraint of the state of	APML Calculation Parameters
Nonuniform Mesh Parameters	Number of APML Layers 10
Script Option: Simulate Using Script Simulate Using Sweep	Theoretical Reflection Coefficient 1e-012
Key Input Field: Source and wavelength: 0.68 DFT Options Components for Poet-Simulation Analysis.	Real APML Tensor Parameter 5
Electric Components Magnetic Components Ex Ey Ez Hx Hy Hz	Power of the Grading Polynomial 3.5
Time Sampling Interval: 1 Auto	
Run Summary OK Cancel Help	OK Cancel Help

<u>Results</u>

The transmission spectra of the gold-perforated rectangular nano-hole arrays are modified by changing the unequal scaling angle Θ . Figure 1 illustrates the transmission spectra of four rectangular nano-hole arrays of various unequal scaling angle ($\Theta = 10^{\circ}$, 25°, 45°, and 55°). During this study, the lattice constant, gold film thickness, substrate refractive index, and orientation angle Φ toward the x-direction are kept constants at 425 nm, 200 nm, 1.5, and 0°, respectively.

unequal scaling angle (Θ) = 10°

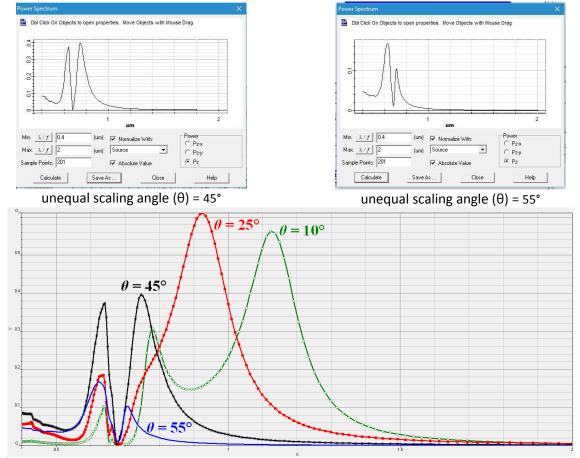


Figure 1: Transmission spectra of gold thin film perforated with rectangular holes at different Θ values.

The impact of changing the orientation angle (Φ) toward the *x*-direction on the properties of the transmission spectrum is investigated for three aperture arrays of different geometries ($\Theta = 10^{\circ}, 25^{\circ}$, and 45°). During this study, the lattice constant, gold film thickness, and substrate refractive index are respectively kept constants at 425 nm, 200 nm, and 1.5 and the electric field remains in the *y*-direction.

$\theta = 10^{\circ}$	$\varphi = 0^\circ, \mathbf{T} = 0.56$	•	θ=10 °		
0.4	$a = 30^{\circ}, T = 0.44$	Φ	T _(λ=1.11µm)	T _(λ=0.77µm)	T _(λ=0.65µm)
	// $//$ $//$ $//$ $//$ $//$ $//$	0°	0.56	0.31	0.010
a3		30°	0.44	0.21	0.006
		60°	0.14	0.07	0.002
0.2		90°	0.00	0.00	0.000
	$\varphi = 60^{\circ}, T = 0.14$	120°	0.14	0.07	0.002
a1		150°	0.44	0.21	0.006
	$\varphi = 90^{\circ}, T = 0.00$	180°	0.56	0.31	0.010
0.	$\phi = 90^{\circ}, 1 = 0.00$	·	•	-	

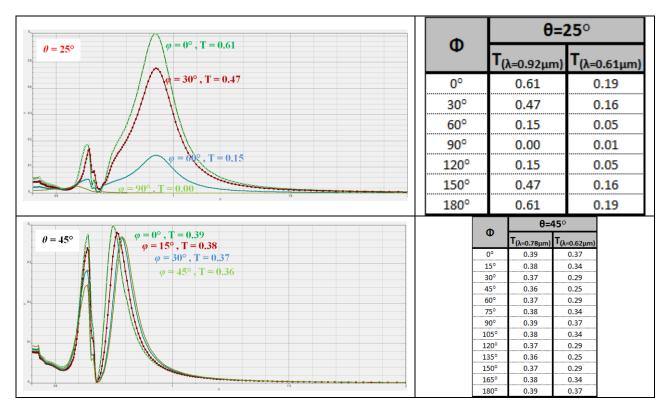


Figure 2: Transmission spectra of gold thin film perforated with rectangular holes at different Φ values.

Using the results shown in Figure 2,

- 1. One can conclude that the amplitudes of the transmission spectra of the asymmetrical rectangle apertures ($\Theta = 10^{\circ}$ and 25°) are strongly modulated by the orientation angle.
- 2. The transmission intensity shows a 2-fold symmetry around $\Phi = 90^{\circ}$.
- 3. Inspired by the polarizer, the peak transmittance T can be expressed as:

 $T_{\rho}(\Phi) = k \left[\cos^2\left(\Phi - \Phi_{\rm o}\right) + \cos\left(\Phi - \Phi_{\rm o}\right)\sin\left(\Phi - \Phi_{\rm o}\right)\right],$

where Φ_o and k are fitting parameters.

4. The intensity of the spectrum of the symmetrical square nano-holes ($\Theta = 45^{\circ}$) at the resonance wavelengths shows less orientation dependencies (almost constant ($\approx 36 \% - 39 \%$)).

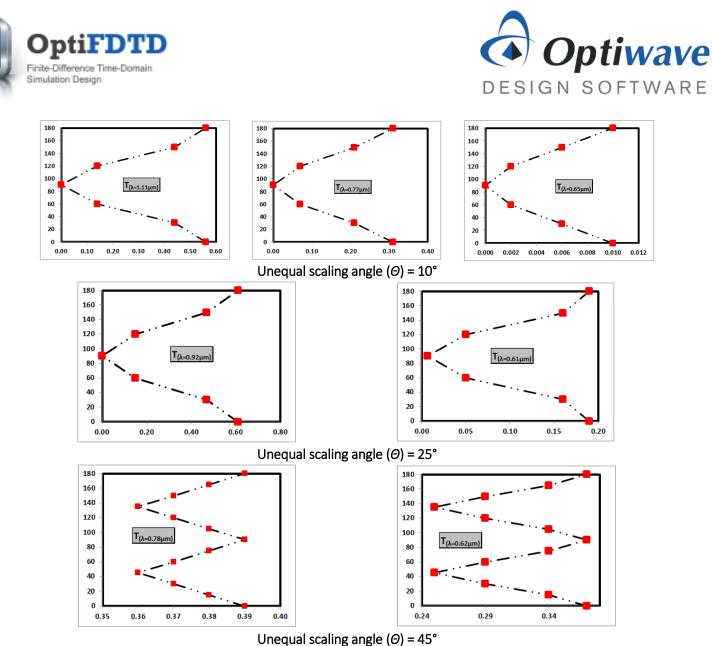


Figure 3: Orientation angle dependencies of transmission peaks intensities at the wavelengths indicated in panels.

References

[1] Amr M. Mahros, Marwa M. Tharwat, and Islam Ashry, "Exploring the Impact of Rotating Rectangular Plasmonic Nano-hole Arrays on the Transmission Spectra and its Application as a Plasmonic Sensor," Journal of the European Optical Society - Rapid publications, vol. 10, Article ID 15023, 6pages, 2015.