
See	discussions,	stats,	and	author	profiles	for	this	publication	at:	http://www.researchgate.net/publication/274099157

OpenFlow	and	GMPLS	Unified	Control	Planes:
Testbed	Implementation	and	Comparative
Study

ARTICLE		in		JOURNAL	OF	OPTICAL	COMMUNICATIONS	AND	NETWORKING	·	APRIL	2015

Impact	Factor:	2.06	·	DOI:	10.1364/JOCN.7.000301

READS

16

3	AUTHORS,	INCLUDING:

Mahmoud	Bahnasy

École	de	Technologie	Supérieure

4	PUBLICATIONS			0	CITATIONS			

SEE	PROFILE

Halima	Elbiaze

Université	du	Québec	à	Montréal

69	PUBLICATIONS			161	CITATIONS			

SEE	PROFILE

All	in-text	references	underlined	in	blue	are	linked	to	publications	on	ResearchGate,

letting	you	access	and	read	them	immediately.

Available	from:	Halima	Elbiaze

Retrieved	on:	26	November	2015

http://www.researchgate.net/publication/274099157_OpenFlow_and_GMPLS_Unified_Control_Planes_Testbed_Implementation_and_Comparative_Study?enrichId=rgreq-30497125-73c7-41f1-add7-b129ed9781a5&enrichSource=Y292ZXJQYWdlOzI3NDA5OTE1NztBUzoyNTQwMzU5MTk4OTY1NzdAMTQzNzU3ODI5MTg5OQ%3D%3D&el=1_x_2
http://www.researchgate.net/publication/274099157_OpenFlow_and_GMPLS_Unified_Control_Planes_Testbed_Implementation_and_Comparative_Study?enrichId=rgreq-30497125-73c7-41f1-add7-b129ed9781a5&enrichSource=Y292ZXJQYWdlOzI3NDA5OTE1NztBUzoyNTQwMzU5MTk4OTY1NzdAMTQzNzU3ODI5MTg5OQ%3D%3D&el=1_x_3
http://www.researchgate.net/?enrichId=rgreq-30497125-73c7-41f1-add7-b129ed9781a5&enrichSource=Y292ZXJQYWdlOzI3NDA5OTE1NztBUzoyNTQwMzU5MTk4OTY1NzdAMTQzNzU3ODI5MTg5OQ%3D%3D&el=1_x_1
http://www.researchgate.net/profile/Mahmoud_Bahnasy?enrichId=rgreq-30497125-73c7-41f1-add7-b129ed9781a5&enrichSource=Y292ZXJQYWdlOzI3NDA5OTE1NztBUzoyNTQwMzU5MTk4OTY1NzdAMTQzNzU3ODI5MTg5OQ%3D%3D&el=1_x_4
http://www.researchgate.net/profile/Mahmoud_Bahnasy?enrichId=rgreq-30497125-73c7-41f1-add7-b129ed9781a5&enrichSource=Y292ZXJQYWdlOzI3NDA5OTE1NztBUzoyNTQwMzU5MTk4OTY1NzdAMTQzNzU3ODI5MTg5OQ%3D%3D&el=1_x_5
http://www.researchgate.net/institution/Ecole_de_Technologie_Superieure2?enrichId=rgreq-30497125-73c7-41f1-add7-b129ed9781a5&enrichSource=Y292ZXJQYWdlOzI3NDA5OTE1NztBUzoyNTQwMzU5MTk4OTY1NzdAMTQzNzU3ODI5MTg5OQ%3D%3D&el=1_x_6
http://www.researchgate.net/profile/Mahmoud_Bahnasy?enrichId=rgreq-30497125-73c7-41f1-add7-b129ed9781a5&enrichSource=Y292ZXJQYWdlOzI3NDA5OTE1NztBUzoyNTQwMzU5MTk4OTY1NzdAMTQzNzU3ODI5MTg5OQ%3D%3D&el=1_x_7
http://www.researchgate.net/profile/Halima_Elbiaze?enrichId=rgreq-30497125-73c7-41f1-add7-b129ed9781a5&enrichSource=Y292ZXJQYWdlOzI3NDA5OTE1NztBUzoyNTQwMzU5MTk4OTY1NzdAMTQzNzU3ODI5MTg5OQ%3D%3D&el=1_x_4
http://www.researchgate.net/profile/Halima_Elbiaze?enrichId=rgreq-30497125-73c7-41f1-add7-b129ed9781a5&enrichSource=Y292ZXJQYWdlOzI3NDA5OTE1NztBUzoyNTQwMzU5MTk4OTY1NzdAMTQzNzU3ODI5MTg5OQ%3D%3D&el=1_x_5
http://www.researchgate.net/institution/Universite_du_Quebec_a_Montreal?enrichId=rgreq-30497125-73c7-41f1-add7-b129ed9781a5&enrichSource=Y292ZXJQYWdlOzI3NDA5OTE1NztBUzoyNTQwMzU5MTk4OTY1NzdAMTQzNzU3ODI5MTg5OQ%3D%3D&el=1_x_6
http://www.researchgate.net/profile/Halima_Elbiaze?enrichId=rgreq-30497125-73c7-41f1-add7-b129ed9781a5&enrichSource=Y292ZXJQYWdlOzI3NDA5OTE1NztBUzoyNTQwMzU5MTk4OTY1NzdAMTQzNzU3ODI5MTg5OQ%3D%3D&el=1_x_7

OpenFlow and GMPLS Unified Control
Planes: Testbed Implementation and

Comparative Study
Mahmoud Bahnasy, Karim Idoudi, and Halima Elbiaze

Abstract—Finding an effective and simple unified con-
trol plane (UCP) for IP/dense wavelength division multi-
plexing multilayer optical networks is very important for
network providers. Generalized multi-protocol label
switching (GMPLS) has been in development for decades
to control optical transport networks. However, it is
extremely difficult to deploy in real operational products,
as there is still much non-GMPLS-capable equipment. On
the other hand, OpenFlow (OF), one of themostwidely used
software defined networking implementations, can be used
as aUCP for packet and circuit switched networks [“Packet
and circuit network convergence with OpenFlow,” in OFC/
NFOEC, Mar. 2010]. In this paper, we propose and experi-
mentally evaluate two solutions using OF to control both
packet and optical networks (OpenFlowMessagesMapping
and OpenFlow Extension). The overall feasibility of these
solutions is assessed, and their performance is evaluated
and compared with the GMPLS approach, using a cus-
tom-built simulator. Simulation results show that the Open-
Flow Extension solution outperforms the OpenFlow
Messages Mapping and GMPLS solutions.

Index Terms—GMPLS; OpenFlow; Optical Network;
Software Defined Networking; Testbed.

I. INTRODUCTION

C urrently, IP and optical layers operate separately
without dynamic interaction, which leads to high op-

erational cost, low network efficiency, and high latency for
end-to-end path provisioning. The main reason behind
these limitations is that IP-based and optical-based net-
works have different architectures, switching technologies,
and control mechanisms. Therefore, a unified control plane
(UCP) for both IP and optical layers is a key challenge for
network carriers and it is important to address this issue.

Generalized multi-protocol label switching (GMPLS), a
relatively mature control plane technique for optical trans-
port networks, is proposed as a solution for UCP [1]. The
GMPLS protocol suite was developed decades ago to oper-
ate completely in a distributed fashion. It is considered the
reference control plane for IP/dense wavelength division
multiplexing (DWDM) multi-layer optical networks.

However, due to its distributed nature, the number of
protocols, and the interactions among different layers,
the GMPLS-based UCP is overly complex [2,3]. Moreover,
the implementation of this technology is difficult as there is
much noncapable GMPLS equipment.

Dynamic Resource Allocation via GMPLS Optical Net-
works (DRAGON) [4,5] is a software that solves this prob-
lem using Simple Network Management Protocol (SNMP)
to extend non-GMPLS equipment and to make them
capable of working in a GMPLS network. In this paper,
we use this software and adapt it to operate with our opti-
cal switch (Cisco ROADM 154541).

Furthermore, we propose using SDN [6] as a promising
solution for UCP. Generally, the SDN technology separates
the control and data planes so that we can introduce new
functionalities by writing software programs that run
within an external controller that manipulates the logical
map of the network. This provides the maximum flexibility
for the operator to control different types of networks and
match the carrier’s preferences. One of the widely used
SDN implementations is OpenFlow (OF) [7]. OF protocol is
mature for L2/L3 packet switching networks, but still at a
starting stage for wavelength-switched optical networks.
So, it needs extensions to support the optical domain.

Some efforts have been done to present OF-based UCP
to control packet and circuit switches. Most notably,
experiments with PAC.C [8] have used alternative ap-
proaches. Other works [9,10] have presented a proposition
similar to PAC.C by providing an experimental study or a
proof-of-concept to support the use of OF as a UCP. How-
ever, [11] presents a comparative study between OF and
GMPLS solutions based only on simulations. In this paper,
we propose two approaches based on OF protocol to con-
trol both optical and electrical networks. Then we exper-
imentally compare these two solutions with a real
implementation of the GMPLS approach. To the best of
our knowledge, this is the first study to consider both
OF and GMPLS UCP solutions and to compare them us-
ing testbed experimentation. We conduct a real case study
of implementing an end-to-end lightpath and lightpath
restoration by establishing a dynamically configured
backup lightpath.

http://dx.doi.org/10.1364/JOCN.7.000301

Manuscript received June 9, 2014; revised November 27, 2014; accepted
January 12, 2015; published March 26, 2015 (Doc. ID 213591).

The authors are with the Department of Electrical and Computer Engi-
neering, Université du Québec à Montréal, Québec, Canada (e-mail: elbiaze
.halima@uqam.ca).

1ROADM: reconfigurable optical add–drop multiplexer.

Bahnasy et al. VOL. 7, NO. 4/APRIL 2015/J. OPT. COMMUN. NETW. 301

1943-0620/15/040301-13$15.00/0 © 2015 Optical Society of America

https://www.researchgate.net/publication/3199603_Lehman_T_Sobieski_J_Jabbari_B_(March_2006)_DRAGON_a_framework_for_service_provisioning_in_heterogeneous_Grid_networks._IEEE_Commun_Mag?el=1_x_8&enrichId=rgreq-30497125-73c7-41f1-add7-b129ed9781a5&enrichSource=Y292ZXJQYWdlOzI3NDA5OTE1NztBUzoyNTQwMzU5MTk4OTY1NzdAMTQzNzU3ODI5MTg5OQ==
https://www.researchgate.net/publication/229013252_Packet_and_Circuit_Network_Convergence_with_OpenFlow?el=1_x_8&enrichId=rgreq-30497125-73c7-41f1-add7-b129ed9781a5&enrichSource=Y292ZXJQYWdlOzI3NDA5OTE1NztBUzoyNTQwMzU5MTk4OTY1NzdAMTQzNzU3ODI5MTg5OQ==
https://www.researchgate.net/publication/261278771_OpenFlow-based_Wavelength_Path_Control_in_Transparent_Optical_Networks_a_Proof-of-Concept_Demonstration?el=1_x_8&enrichId=rgreq-30497125-73c7-41f1-add7-b129ed9781a5&enrichSource=Y292ZXJQYWdlOzI3NDA5OTE1NztBUzoyNTQwMzU5MTk4OTY1NzdAMTQzNzU3ODI5MTg5OQ==
https://www.researchgate.net/publication/241629842_Field_Trial_of_an_OpenFlow-Based_Unified_Control_Plane_for_Multilayer_Multigranularity_Optical_Switching_Networks?el=1_x_8&enrichId=rgreq-30497125-73c7-41f1-add7-b129ed9781a5&enrichSource=Y292ZXJQYWdlOzI3NDA5OTE1NztBUzoyNTQwMzU5MTk4OTY1NzdAMTQzNzU3ODI5MTg5OQ==

The first solution is named OpenFlow Messages Map-
ping. This solution maps the standard messages from
OF into optical channel requests that are compatible, while
not modifying the OF protocol. The second one is named
OpenFlow Extension, in which new messages have been
added to the OF protocol in order to support the circuit
switching. The proposed solutions are implemented in a
testbed to demonstrate their effectiveness, as well as a
GMPLS-based approach. For both solutions, we implement
an OpenFlow Optical Agent to translate the OF messages
to be executed on the optical switches. Moreover, an Open-
Flow Path Computation Element (OF-PCE) module is
added to the OF controller as a network application in
order to control the optical domain.

The remainder of this paper is organized as follows.
Section II describes how OF can be used to define a
UCP for both IP and optical networks and presents the im-
plementation details of the proposed solutions (OpenFlow
Messages Mapping and OpenFlow Extension). Section III
presents the GMPLS-based UCP approach and the deploy-
ment of this protocol in our testbed. In particular, we elabo-
rate the adaptation of DRAGON software for our ROADM
(Cisco ROADM 15454). Section IV presents the different
experimental scenarios for each solution and the compar-
ative results with GMPLS. In Section V, we present our
custom-built Java event-driven simulator and the different
algorithms and topologies used in order to compare the per-
formance of the proposed solutions. Concluding remarks
are given in Section VI.

II. OPENFLOW-BASED UNIFIED CONTROL PLANE

A. Overview

In this section, we outline the main characteristics of OF.
For more detail, readers are referred to [12] and [13]. OF is
an open protocol developed at Stanford University for run-
ning new experimental protocols and technologies on real
networks, without disrupting the traffic of the network or
the availability of the network [12]. In a traditional net-
work, the data path and the control path occur on the same
device (switch, router). OF separates these two functions.
OF switches perform the data plane functions and OF
controllers implement the control plane intelligence and
communicate with the OF switch via the OF protocol.

An OF switch consists of one or more flow tables and
group tables, which perform packet lookups and forward-
ing, and a secure channel that is connected to an external
controller. Each flow table in the switch contains a set of
flow entries. Each flow entry consists of match fields,2 coun-
ters, and a set of instructions to apply on matching packets.

OF advocates the separation of data and control planes
for circuit and packet networks, as well as the treatment of
packets as part of flows, where a packet flow is defined as
any combination of L2/L3/L4 headers. This, together with

L1/L0 circuit flows, provides a simple flow abstraction that
fits well with both types of networks. Hence, OF presents a
common platform for the control of the underlying switch-
ing hardware that switches flows of different granularities,
while allowing all the routing control and management to
be defined by software outside the data path, in the OF
controller as shown in Fig. 1.

B. OpenFlow Message Mapping and OpenFlow
Extension

This paper proposes two solutions using OF protocol as a
UCP for both optical and electrical domains (OpenFlow
MessagesMapping and OpenFlow Extension). For both sol-
utions, we implement an OpenFlow Optical Agent to trans-
late the OFmessages to its proper Transaction Language 1
(TL1) commands [14] to be executed on the optical switch
using a telnet channel. A path computation element (PCE)
module is added to the OF controller as a network applica-
tion (Fig. 2). Upon request arrival, PCE calculates the
corresponding lightpath and sends the cross-connection
messages to the involved ROADMs. In the next sections,
we describe two solutions separately.

1) OpenFlow Messages Mapping: In this solution, OF
standard messages are used without any modification.
OF messages are mapped into optical switch commands.

Fig. 1. Unified architecture of a converged packet–circuit
network.

Fig. 2. OpenFlow Optical Agent interactions.
2Match field: a field on which a packet could be matched, including packet
headers, the ingress port, and the metadata value.

302 J. OPT. COMMUN. NETW./VOL. 7, NO. 4/APRIL 2015 Bahnasy et al.

https://www.researchgate.net/publication/220195143_OpenFlow_enabling_innovation_in_campus_networks._SIGCOMM_Comput_Commun_Rev?el=1_x_8&enrichId=rgreq-30497125-73c7-41f1-add7-b129ed9781a5&enrichSource=Y292ZXJQYWdlOzI3NDA5OTE1NztBUzoyNTQwMzU5MTk4OTY1NzdAMTQzNzU3ODI5MTg5OQ==
https://www.researchgate.net/publication/220195143_OpenFlow_enabling_innovation_in_campus_networks._SIGCOMM_Comput_Commun_Rev?el=1_x_8&enrichId=rgreq-30497125-73c7-41f1-add7-b129ed9781a5&enrichSource=Y292ZXJQYWdlOzI3NDA5OTE1NztBUzoyNTQwMzU5MTk4OTY1NzdAMTQzNzU3ODI5MTg5OQ==

Hence, the OFPT_FLOW_MOD message of type OFPFC_
ADD is mapped into the ENT-OCHNC TL1 command to
create a lightpath channel. The OFPT_FLOW_MOD mes-
sage of type OFPFC_DELETE is mapped into the DLT-
OCHNC TL1 command to delete the lightpath channel.
When the agent receives the OFPT_FEATURES_
REQUEST message, it encapsulates the emulated port
information into the OFPT_FEATURES_REPLY message.
Finally, the agent periodically reads the ROADM events
(using the RTRV-ALM-ALL TL1 command), and if it finds
any critical alerts, it creates an OFPT_PORT_STATUS
message and forwards this message to the controller for
processing.

2) OpenFlow Extension: In this solution, OF messages
are extended and new messages are added. The specifica-
tion of the new messages [15] allows the controller to
differentiate between the circuit-switching and the packet-
switching networks. For example, the OFPT_FEATURES_
REPLY message is extended by adding extra information
about the circuit-switching ports. In order to send the
information about a new cross-connect, a new match struc-
ture called OFPT_CONNECT is presented. Multiple ports
can be cross-connected by a single structure. This structure
is added to the newly defined message called OFPT_
CFLOW_MOD. Finally, when the state of a port changes,
the OpenFlow Optical Agent sends a new defined message
called OFPT_CPORT_STATUS.

C. OpenFlow Optical Agent

As mentioned above, the main role of the OpenFlow
Optical Agent is to translate the optical channel requests
and OF messages into TL1 commands to be executed on
optical nodes (Fig. 2).

This agent is associated with each optical node and acts
as a virtual switch. It consists of i) anOpenFlow Channel to
communicate with the OF controller, ii) an OpenFlow/TL1
Translator to convert OF messages into TL1 commands,
and iii) a Ports Emulation module to emulate the optical
node ports and send the port status information to the con-
troller. This information is used by the controller to update
the ports database and to calculate the lightpath.3

D. OpenFlow Path Computation Element

The OF-PCE implements an algorithm to establish light-
paths between source–destination pairs to create a fully
connected logical topology [16]. A traffic engineering
database (TED) is created to save the network topology in-
formation. As the OF controller has centralized manage-
ment, the TED will be updated in case of lightpath
creation/release and port status change. Two modules
are proposed to implement the PCE: i) Executor and ii)
Optical Switch Adapter (Fig. 3).

1) Executor: This module ensures the avoidance of using
one wavelength more than once in the same fiber. Each
wavelength carries traffic between a pair of source and des-
tination. Therefore, multiple wavelengths are reserved in a
single strand of fiber for establishing multiple lightpaths
through one fiber. These connections between source and
destination nodes in DWDM networks are performed in
two steps as follows:

• Routing: The shortest path between each pair of nodes
is identified using the Dijkstra algorithm. In this case,
we are interested in a network topology composed of
OF switches and ROADMs.

• Wavelength Assignment: Once the lightpath routes
are determined, the wavelength assignment problem
can be represented as a graph coloring problem. Each
lightpath corresponds to a node in a wavelength assign-
ment graph, and two nodes are set as neighbors only if
the respective lightpaths share at least one common link.

2) Optical Switch Adapter: Each ROADM consists of a
set of cards and each card contains a set of configured ports
[17]. ROADM edges are connected to OF switches via wave-
length selective switch (WSS) and channel demultiplexer
(DMX) cards, whereas ROADM core interfaces are inter-
connected via line cards. Two fibers are used for the
bidirectional connection between two ROADMs. These
specifications led us to add this module.

III. GMPLS-BASED UNIFIED CONTROL PLANE

A. Overview

GMPLS evolved from multi-protocol label switching
(MPLS), which was first introduced in the 1990s. Its best
characteristics are that it can set up multiple tunnels and
apply traffic engineering properties on them. MPLS found
a way to make two opposing technologies coexist and estab-
lish end-to-end paths in both packet-based and cell-based
networks. The GMPLS is an extension of MPLS that solves
many problems and adds new features. GMPLS has a set of
five interfaces, such as time-division multiplex capable,
Lambda switch capable, or fiber switched capable interfa-
ces, as well as the packet switch capable and layer-2 switch
capable interfaces inherited fromMPLS. Furthermore, due
to the diverse networking technologies that the GMPLS

Dijkstra

Fig. 3. OF-PCE workflow.

3Port discovery is out of scope in this paper.

Bahnasy et al. VOL. 7, NO. 4/APRIL 2015/J. OPT. COMMUN. NETW. 303

supports, it eliminates the need for an operator. In this way,
the entire network can be automated and tunneling can be
achieved without human interference. Using a distributed
protocol on large networks makes the path computation
process very complex and resource consuming. To address
this problem, the Internet Engineering Task Force (IETF)
has introduced a centralized PCE entity in the GMPLS
control plane.

B. GMPLS With PCE Signaling

Due to the complexity of the GMPLS protocol, a central-
ized approach is presented using a PCE. The PCE is a cen-
tralized network element responsible for computing the
lightpath. In this topology, PCE also assigns wavelength
on each link for each request. The PCE is used in a
GMPLS-controlled wavelength switched optical network
(WSON) [18,19]. The PCE uses a messaging protocol called
PCEP to exchange information between the GMPLS con-
troller of each node and the PCE. The PCE maintains
the information of the nodes, link status, and wavelength
availability in the TED.

The link update is carried out by the open shortest path
first (OSPF) messaging [link state advertisements (LSAs)].
These updates are sent when a new wavelength status
change occurs (reserve/release). A full link status update
occurs when a new node joins or leaves the network.

The detailed message sequence on GMPLS with a PCE
mechanism to create a lightpath is as follows:

• The source node sends a PCEP request message for sub-
mitting a path computation request.

• The PCE computes the path requested and assigns a
wavelength to this path. Then the PCE sends this
information to the source by using a PCEP PCReplay
message. If the PCE fails in computing a path or in
assigning a wavelength on it, it replies with a PCReplay
message with NO-PATH, and the lightpath request is re-
fused (forward blocking).

• Upon reception of the PCReplay message, the source
node sends the resource reservation protocol–traffic en-
gineering (RSVP-TE) messages along the computed path
to reserve it. The path reservation message includes the
Explicit Route and the label set. The label set informa-
tion includes the wavelength assigned by the PCE.

• When a node receives a RSVP-TE path reservation mes-
sage, it performs the wavelength assignment if it is avail-
able. Otherwise, another wavelength contained in the
label set is selected, according to a specific wavelength
assignment strategy (e.g., first-fit).

• If another request requests the same resource (link and
wavelength) on a specific node and the latter request is
accomplished before the former request, the node will re-
fuse the former request and reply with RSVP refuse mes-
sage (backward blocking).

• When the wavelength is assigned, the destination node
sends back a Resv message to update the status of the
links and wavelengths through the path to “Reserved.”

• Once the Resv message reaches the source, the lightpath
is established and data can be carried through the path.

Lightpath release is performed in a way similar to the
setup process (in a distributed manner through RSVP-
TE signaling [20]). As in the previous description, the setup
procedure may be blocked during path computation be-
cause of lack of resources (forward blocking) or may be
blocked due to wavelength contentions (backward block-
ing). Contentions arrive when two or more RSVP-TE mes-
sages attempt to reserve the same resource (link and
wavelength), while the link availability TED is outdated
when the path request reaches the PCE.

C. DRAGON

In reality, there is still much non-GMPLS-capable equip-
ment. DRAGON software solves this problem in the Ether-
net networks using SNMP to adapt this equipment to a
GMPLS control plane. In this paper, we use this software
and adapt it to operate with our optical switch (Cisco
ROADM 15454).

The DRAGON project studies and develops an open-
source software to enable dynamic provisioning of network
resources on an interdomain basis across heterogeneous
network technologies. The project enables communication
between networks of different types through the GMPLS
control suite. For its implementation, DRAGON deploys
the IP network infrastructure and creates a GMPLS-
capable optical core network to allow dynamic provisioning
of deterministic network paths in direct response to end-
user requests, spanning multiple administrative domains.
Optical transport and switching equipment acting as label
switching routers (LSRs) provide deterministic network re-
sources at the packet, wavelength, and fiber cross-connect
levels.

1) DRAGON Control Plane Components: DRAGON soft-
ware works like a control plane within a GMPLS network.
The control plane architecture consists of two basic
elements4: the client system agent (CSA) and the virtual
label switch router (VLSR).

a) CSA: The CSA is a software that runs on (or on behalf
of) any system that terminates the data plane (traffic
engineering) link of the provisioned service. This is
the software that participates in the GMPLS protocols
to allow for on-demand end-to-end provisioning from
client system to client system. A CSA can be a host,
a router, or any networked device.

b) VLSR: GMPLS has not yet been implemented on a
large scale. There are still a lot of non-GMPLS-capable
switches in use. To overcome this limitation, the
DRAGON protocol suite uses the VLSR. A VLSR is
used to control different kinds of switches, such as
Ethernet, TDM, or optical switches. VLSR translates
GMPLS commands into switch-specific commands,

4The information found in this section is based on the Sara Project docu-
mentation in IETF RFC 3945 [1].

304 J. OPT. COMMUN. NETW./VOL. 7, NO. 4/APRIL 2015 Bahnasy et al.

such as those coming from SNMP. By the use of these
commands, a VLSR can control the switch and, for ex-
ample, set a switch port in a specific virtual local area
network (VLAN). To communicate with other VLSRs
and CSAs, a VLSR uses the routing protocol open
shortest path first–traffic engineering (OSPF-TE)
and path signaling protocol RSVP-TE. A VLSR uses
OSPF-TE to get familiar with the control plane net-
work and to inform the VLSRs and CSAs in the control
plane about the TE network links. A VLSR uses the
OSPF-TE LSAs to send information about the TE links.
Information that could be sent over the control plane is
information about upcoming and outgoing label
switched paths (LSPs). The OSPF-TE works with
two daemons called OSPFD and Zebra. Zebra, or
GNU Zebra [21], is routing software for managing
TCP/IP based routing protocols like RIP, BGP, and
OSPF. The DRAGON software extends the OSPF rout-
ing daemon with TE information like bandwidth,
WDM, and TDM used by GMPLS. A VLSR uses
RSVP-TE for signaling and setting up LSPs within
the GMPLS network. The RSVP-TE protocol originates
from the Technische Universität Darmstadt’s KOM-
RSVP [22]. The DRAGON software extends the
KOM-RSVP signaling protocol with support for
RSVP-TE, GMPLS, Q-Bridge, SNMP, and VLAN
control.

2) Adapting VLSR for Cisco ROADM 15454: The
DRAGON software suite is being developed under the
GNU general public license [23]. In order to install the
DRAGON software, the VLSR implementation guide has
been followed [24].

By default, the VLSR PC uses SNMP RFC 2674 to com-
municate with the switch. To manage and control the Cisco
ROADM 15454, we use TL1 commands. Thus, we imple-
ment an SNMP/TL1 gateway that acts as a proxy to adapt
the VLSR software with Cisco ROADM 15454 specifica-
tions (Fig. 4).

As shown in Fig. 4, the SNMP/TL1 Gateway is composed
of two modules as follows:

• SNMPAgent:We have developed an SNMP agent using
the snmp4j [25] open source Java library. It provides
functions to receive and send SNMP protocol data units
(PDUs).

• TL1 Agent:Using the iReasoning [26] TL1 API, we have
developed a TL1-based management application that
communicates with the Cisco ROADM 15454. Its main
function is to map the SNMP messages into TL1
commands to set up configurations in the Cisco ROADM
15454.

IV. EXPERIMENTAL SETUP

In this section, we first present the OF experiments fol-
lowed by the GMPLS ones. Then we discuss the experimen-
tal results in order to evaluate and compare the OF
solutions with GMPLS.

A. OpenFlow Experiments

Two experiments are conducted to demonstrate the effi-
cacy of our proposed solutions. While the first experiment
consists of creating an end-to-end lightpath, the second ex-
periment establishes a backup restoration lightpath when
failure occurs on the primary lightpath.

1) Testbed Setup: The architecture of our testbed is de-
picted by Fig. 5. It consists of two clients, A and B, which
are connected directly to OF switches 1 and 2, respectively.
Each switch is connected to an electrical/optical converter.
These converters are connected to a DWDM optical net-
work composed of three Cisco ROADM optical switches
(Cisco ROADM 15454). Each ROADM is controlled by an
OpenFlow Optical Agent. The OpenFlow Optical Agents
and the OF switches are connected to an OF controller over
an OF channel.

2) Scenario A—End-to-End Lightpath Setup: As shown
in Fig. 5, a data flow sent from Client A to Client B arrives
at OF switch 1. When OF switch 1 does not find any flow
entry that matches with this flow, it encapsulates the first
flow packet in an OFPT_PACKET_IN message and
forwards it to the controller. The controller then uses
the OF-PCE to calculate the lightpath and creates the
lightpath by sending the OFPT_FLOW_MOD message
(OpenFlow Messages Mapping solution) or the OFPT_
CFLOW_MOD message (OpenFlow Extension solution) to
the switches. The connection is established between the
two clients following steps A1, A2, A3, A4, A5, A6, and
A7 (Fig. 5). The Wireshark screenshot presents the ex-
changed messages during this scenario (Fig. 6).

3) Scenario B—Shared Optical Restoration: This sce-
nario demonstrates how an OF controller acts when a link
failure occurs. The path deletion is performed by the con-
troller using an OFPFC_DELETE message. Figure 5
shows the steps that are executed in this scenario (B1,
B2, B3, B4, and B5). The Wireshark screenshot presents
the messages exchanged during this scenario (Fig. 7).

B. GMPLS Experiments

In order to experiment with GMPLS, we construct a
transparent optical network testbed with two ROADMs
(Fig. 8). In this infrastructure, the control plane consists
of two CSAs and two VLSRs. The CSAs and the VLSRs
are connected via the switch hub. Generic routing encapsu-
lation (GRE) tunnels are created between the CSAs and the
VLSRs and between the VLSRs themselves to exchange
RSVP-TE and OSPF-TE messages. The SNMP/TL1Fig. 4. SNMP/TL1 gateway.

Bahnasy et al. VOL. 7, NO. 4/APRIL 2015/J. OPT. COMMUN. NETW. 305

gateway has a connection with the switch hub to allow
SNMP management by the VLSRs. It translates SNMP
messages to TL1 commands in order to configure the
ROADMs. In the SNMP/TL1 gateway machine, we in-
stalled two virtual machines. Each one listens to a VLSR
on Port 161 and controls one ROADM.

Figure 9 depicts GMPLS signaling to create an LSP from
CSA2 to CSA1 using Wireshark capture in VLSR2
[Fig. 9(a)] and VLSR1 [Fig. 9(b)].

CSA2 sends the RSVP_PATH message to VLSR2 with
the destination set to target CSA1. Both VLSRs forward
the path message since they are not the destination. When
CSA1 receives the RSVP_PATH message, it replies to it
with the RSVP_RESV message and sends it to VLSR1.
VLSR1 forwards this message to VLSR2 because it is
not the destination of the message. Finally, VLSR2 for-
wards the RSVP_RESV message to CSA2. At this point,
the LSP is active and can be used. The SNMP/TL1 gateway

Fig. 5. Network configuration and exchanged messages during the OF experiments.

306 J. OPT. COMMUN. NETW./VOL. 7, NO. 4/APRIL 2015 Bahnasy et al.

translates the SNMP messages sent by the two VLSRs to
TL1 commands in order to configure the two ROADMs.

C. Experimentation Results

Table I shows the lightpath establishment time (in mil-
liseconds) consumed on each solution (OpenFlow Messages

Mapping and OpenFlow Extension) and the GMPLS ap-
proach. In this table, Path 1 and Path 2 refer to the primary
and backup lightpaths, respectively. Path 1 nodes are
OF_Switch 1 → ROADM 2 → ROADM 3 → OF_Switch 2,
while Path 2 nodes are OF_Switch 1 → ROADM 2 →
ROADM 1 → ROADM 3 → OF_Switch 2. LSP on the table
refers to the label switch path for GMPLS. LSP nodes are
CSA1 → ROADM 2 → ROADM3 → CSA2. The experiment
results show that the OpenFlow Extension solution
(216 ms) outperforms the OpenFlow Messages Mapping
(227ms) solution. This result is expected because theOpen-
Flow Extension solution uses one message to encapsulate
bidirectional lightpath information and OpenFlow Mes-
sages Mapping needs two messages. For the backup light-
path (Path 2), which spans on three nodes, the OpenFlow

Fig. 6. OF scenario A: Wireshark screenshot.

Fig. 7. OF scenario B: Wireshark screenshot.

Fig. 8. DRAGON test with two ROADMs.

Fig. 9. GMPLS scenario: Wireshark screenshot.

TABLE I
EXPERIMENT TIMING

OpenFlow Messages Mapping Solution

Switch Establishment

Controller ROADM 2 ROADM 1 ROADM 3 Total (ms)

Path1 16 121 — 90 227
Path2 18 110 30 111 269

OpenFlow Extension Solution

Switch Establishment

Controller ROADM 2 ROADM 1 ROADM 3 Total (ms)
Path1 16 100 — 100 216
Path2 18 90 30 101 239

GMPLS Solution

Switch Establishment

RSVP-TE ROADM 2 ROADM 1 ROADM 3 Total (ms)
LSP 130 110 — 100 340

Bahnasy et al. VOL. 7, NO. 4/APRIL 2015/J. OPT. COMMUN. NETW. 307

Extension solution takes 239 ms to create the lightpath
while OpenFlow Messages Mapping takes 269 ms. On
the other hand, GMPLS takes more time (340 ms) to create
the lightpath than OF solutions. This is because the
GMPLS-based control plane is complicated. The flexibility
and manageability of the GMPLS-based control plane is
low, because, for example, if we want to create or update an
end-to-end lightpath, the signalization and reservation
messages must be updated and exchanged among all the
intermediate VLSRs. However, the OF-based UCP pro-
vides the maximum flexibility and manageability for car-
riers since all the functionalities are integrated into a
single OF controller. More importantly, the OF-based
control plane is a natural choice for a UCP in IP/DWDM
multilayer networks due to its centralized behavior (as
shown in Fig. 5). Thus, the technical evolution from
GMPLS to OF is a process in which the control plane
evolves from a fully distributed architecture to a fully
centralized one.

V. SIMULATION STUDY

In this section we present a simulation comparative
study of the OF solutions (OpenFlow Messages Mapping
and OpenFlow Extension) and the GMPLS approach. To
conduct the comparison, a custom-built Java event-driven
simulator is written based on the mechanisms mentioned
in Subsection III.B. The measurements taken from the
previously conducted experiments are used in writing
the simulator.

Table II shows the signaling protocol used by each
solution.

The simulation is carried out on two real optical network
topologies. The topologies adopted are the optical network
topologies of the United States National Science Founda-
tion (NSF) and the European Union Ultrahigh Capacity
Optical Transmission Network (European Research
Project COST 239). The next subsection presents the
simulation environment, parameters, and algorithms.
Then, the results for each topology are presented in
Subsections V.B and V.C.

A. Custom-Built Java Event-Driven Simulator

The simulator is a custom-built Java event-driven appli-
cation. It is written based on the mechanisms mentioned in
Subsection III.B. The internal optical switch lightpath

establishment time is emulated to 60 ms for all solutions.
For both topologies, the links between nodes are bidirec-
tional. Each link supports 32 wavelengths. The controller
and the PCE use the first-fit approach for assigning wave-
lengths. Wavelengths cannot be changed across the path
since nodes do not support wavelength conversion. Light-
path requests are generated according to a Poisson process
and uniformly distributed among all node pairs. The hold-
ing time is fixed to 180 s, and the average interarrival time
is varied from 0.3 to 18 s. This varies the Erlang from 600
to 10.

The first algorithm explains how the written application
simulates the OF solutions. The application uses the
network topology nodes (G:Graph), the connections among
them (V:Vertex), and the simulation end time as inputs.
Then, it starts by generating one event of the type create
channel. After that, it reads events one at a time and han-
dles them. Depending on the event type, each event type is
treated differently, as explained in the algorithm. For the
create-channel event, it generates a new create-
channel event based on the Poisson interarrival time,
updates the controller’s time, calculates the lightpath,
and finds a free channel (wavelength). Finally, it generates
the create-cross-connect events for each switch through the
calculated path (events to be executed by the switches).
Unless there is no lightpath available, it declares this
request a blocked request. For the events of the type delete
channel, it updates the controller’s time. Then, it generates
the delete-cross-connect events for each switch through the
lightpath (events to be executed by the switches). For the
event of the type create cross-connect, it generates an event
of the type delete channel. For both events of the type cre-
ate/delete cross-connect, it updates the node time (emulat-
ing the cross-connect creation time 60ms). Then, it updates
vertex information.

Algorithm 1 OpenFlow Event-Driven Simulator
Algorithms
Data:G: Graph, V: vertex, EndTime: Simulation End Time
Result: Establishment time, blocking probability, and

control traffic
Initialization: Generate one event (using a uniformly
distributed source and destination and Poisson interarrival
time);
while current time < EndTime do
read the nearest event;
switch Event Type do

case Create Channel
Generate new Create Channel event based on
Poisson interarrival time;
Update the controller’s time;
Update the controller’s vertex information;
Calculate path using Dijkstra algorithm;
Find a free channel (wavelength) cross the
calculated path;
if Path calculation return false OR no channel
available then

Declare Request Blocked;
Continue with the next event;

TABLE II
SUMMARY OF SIMULATED SOLUTIONS

Messaging Protocol

OFP OSPF-TE RSVP-TE

GMPLS with PCE NO YES YES
OpenFlow Message Mapping YES NO NO
OpenFlow Extension YES NO NO

308 J. OPT. COMMUN. NETW./VOL. 7, NO. 4/APRIL 2015 Bahnasy et al.

else
Generate create Cross-Connect events for
each node through the calculated path (with
the information of event time, path, and
wavelength);

end
endsw
case Delete Channel

Update the controller’s time;
Update the controller’s vertex information;
Generate delete Cross-Connect events for each
node through the calculated path (with the
information of event time, path and wavelength);

endsw
case Create Cross-Connect

Update nodes’ time (emulating the cross-connect
creation time 60 ms);
Update vertex information;
Generate delete event for the created path (with
event time = current time + hold time);

endsw
case Delete Cross-Connect

Update nodes’ time (emulating the cross-connect
creation time 60 ms);
Update vertex information;

endsw
endsw

end

The GMPLS simulation is shown in Algorithm 2. The
algorithm explains how the written application simulates
the GMPLS with the PCE approach. In this algorithm, the
inputs and the initialization are the same as in Algorithm
1. By traversing all the events depending on their types,
each event type is treated differently. For the create-
channel events, it generates a new create-channel event
based on the Poisson interarrival time, updates the control-
ler time, calculates the lightpath, finds a free channel
(wavelength), and finally it generates the create-cross-
connect event for the first switch in the calculated path
(event to be executed by the switch). Unless there is no
lightpath available, it declares this request as a blocked re-
quest. For events of the type delete channel, it updates the
controller’s time. Then, it generates the delete-cross-
connect event for the first switch in the lightpath (event
to be executed by the switch). For both events of the type
create/delete cross-connect, it updates the node time (em-
ulating the cross-connect creation time of 60 ms that is cal-
culated from the testbed experiment). Then, it updates
vertex information. For the event of the type create
cross-connect, it verifies if the requested channel is avail-
able. If it is not available, it declares this request blocked
(backward blocking) and it generates a delete-channel re-
quest. If it is available and this is not the last switch in the
lightpath, it generates an event of the type create cross-
connect for the next switch in the lightpath; otherwise it
generates an event of the type delete channel. For both
events of the type LSA update (create/delete), it updates
the TED (controller vertex information).

Algorithm 2 GMPLS/PCE Event-Driven Simulator
Algorithms
Data:G: Graph, V: vertex, EndTime: Simulation End Time
Result: Establishment time, blocking probability, and

control traffic
Initialization: Generate one event (using a uniformly
distributed source and destination and Poisson inter-
arrival time);
while current time < EndTime do
read the nearest event;
if Event Type == Create Channel then Generate one
event based on the Poisson inter-arrival time switch
Event Type do

case Create Channel
Update the controller’s time;
Calculate path using Dijkstra algorithm;
Find a free channel (wavelength) cross the
calculated path;
if Path calculation return false OR no channel
available then

Declare Request Blocked; Continue with the
next event;

else
Generate create Cross-Connect event for the
first node in the calculated path (with the
information of event time, path, and
wavelength);

end
endsw
case Delete Channel
Update the controller’s time;
Generate delete Cross-Connect event for the
first node in the calculated path (with the
information of event time, path, and wavelength);

endsw
case Create Cross-Connect
Update node time (emulating the cross-connect
creation time 60 ms);
Update switch’s vertex occupation;
if current switch is the last one in the path then

Generate delete event for the created path
(with event time = current time + hold time);

else
if channel (wavelength) is available then

Generate create Cross-Connect event for
the next node in the calculated path;

else
Declare this request blocked;
Generate delete channel event

end
end
Generate LAS update (Create) event;

endsw
case Delete Cross-Connect
Update nodes time (emulating the cross-connect
creation time 60 ms);
Update switch’s vertex occupation;
if current switch is not the last on the path then
Generate delete Cross-Connect event for the

Bahnasy et al. VOL. 7, NO. 4/APRIL 2015/J. OPT. COMMUN. NETW. 309

next node in the calculated path;
Generate LAS update (Delete) event;

endsw
case LSA update (Create/Delete)

Update the TED (controller Vertex information);
endsw

endsw
end

B. National Science Foundation Topology

The first topology we ran our simulation on was the NSF
topology [27].

The NSF topology consists of 14 nodes and 21 links; each
link has 32 channels (wavelength) (Fig. 10). The distance
between each pair is shown in the same figure. The Dijk-
stra algorithm uses these distances to calculate the short-
est path.

The simulation was run for a period of 3000 s (50 min) to
ensure the stability of the network. Lightpath establish-
ment time, control traffic into and out of the controller
and PCE, and the blocking probability are calculated from
the simulation. The results are shown in the graphs:
i) lightpath establishment time expressed in milliseconds
versus network load (Erlang) (Fig. 11), ii) number of
control messages (controller load) versus network load
(Erlang) (Fig. 12), and iii) lightpath blocking probability
versus network load (Erlang) (Fig. 13).

Figure 11 depicts the establishment time for a bidirec-
tional lightpath. It shows that the OF Extension solution
experiences the lowest setup time, as shown by the blue

line. Because OpenFlow Messages Mapping uses two
FLOWMOD messages to establish the lightpath, it is ex-
pected that this solution consumes more time than the
OpenFlow Extension solution, as shown by the blue line
in Fig. 11. OF solutions execute the lightpath on parallel;
hence, the establishment time of a lightpath is around a
fixed value. On the other hand, the GMPLS approach ex-
ecutes the lightpath sequentially. As a result, it has the
highest setup time, as shown by the red line in Fig. 11,
in the range of 600–900 ms for a bidirectional lightpath.
GMPLS has the tendency to decrease the establishment
time as the network load increases because, at high net-
work load, the average path length is shorter, as shown
in Fig. 14 (it decreases from 3.6 to 2.6 nodes per request).
Even though the number of hops decreases also in OF-
based solutions, this does not affect the lightpath setup
time since the requests are executed in parallel. Figure 12
depicts the control traffic for each solution. It shows that
both OF solutions experience low control traffic compared
to the GMPLS solution, as shown by the blue and green
lines. This difference is due to the PCEP messaging that
has to be sent for each node and also because of the LSA
update messages, which each node has to send back to
the controller in case the link state changes.

Figure 13 depicts the blocking probability. This figure
shows that both OF-based solutions have the same block-
ing probability values, which is expected since both tech-
niques use the same Dijkstra algorithm and the same
resource database. On the other hand, the GMPLS-based
approach experiences backward blocking, which makes
this technique have a higher blocking ratio with lowFig. 10. NSF topology (14 nodes and 21 links).

0 50 100 150 200 250 300 350 400 450 500 550 600
50

100

150

200

250

300

350

400

450

500

Network Load (Erlang)

A
ve

ra
ge

 E
st

ab
lis

hm
en

t T
im

e
(m

s)

OpenFlow messages mapping
OpenFlow Extension
GMPLS/PCE

Fig. 11. Lightpath establishment time (milliseconds) versus
network load (NSF topology).

0 50 100 150 200 250 300 350 400 450 500 550 600
0

5

10

15

20

25

30

35

40

45

50

Network Load (Erlang)

C
on

tr
ol

 P
la

ne
 T

ra
ffi

c
(P

ac
ke

t/s
)

OpenFlow messages mapping
OpenFlow Extension
GMPLS/PCE

Fig. 12. Number of control messages versus network load (NSF
topology).

0 100 200 300 400 500 600
10

−3

10
−2

10
−1

10
0

Network Load (Erlang)

B
lo

ck
in

g
P

ro
ba

bi
lit

y

OpenFlow messages mapping
OpenFlow Extension
GMPLS/PCE

Fig. 13. Lightpath blocking probability versus network load (NSF
topology).

310 J. OPT. COMMUN. NETW./VOL. 7, NO. 4/APRIL 2015 Bahnasy et al.

network load, as shown by the red line in Fig. 13. As we
mentioned before, backward blocking occurs because of
wavelength contentions. Contentions arrive when two or
more RSVP-TE messages attempt to reserve the same re-
source (link and wavelength). Indeed, the link-state data-
base TED may be outdated when the path request reaches
the PCE, causing this contention.

C. European Optical Network Topology

The Ultrahigh Capacity Optical Transmission Network
(European Research Project COST 239) [28] is the second
topology on which we ran our simulation. This topology is
depicted in Fig. 15.

The COST 239 topology consists of 11 nodes and 26 links,
and each link has 32 channels (wavelength). The distance
between each pair is also shown in Fig. 15. The Dijkstra
algorithm uses these distances to calculate the short-
est path.

The same simulation steps were followed as for the NSF
topology. The simulation was run for a period of 3000 s

(50 min) to ensure the stability of the network. The light-
path establishment time, control traffic into and out of the
controller and PCE, and blocking probability are calculated
from the simulation. The results are shown in the graphs:
i) lightpath establishment time expressed in milliseconds
versus network load (Erlang) (Fig. 16), ii) number of control
messages (controller load) versus network load (Erlang)
(Fig. 17), and iii) lightpath blocking probability versus net-
work load (Erlang) (Fig. 18).

The results shown in Fig. 16 support the same result as
the NSF topology. It depicts that the OpenFlow Extension
solution experiences the lowest setup time, as shown by
the blue line. It also depicts that GMPLS has the highest
setup time, as shown by the red line in Fig. 16. As in the
previous topology, the figure shows that GMPLS lightpath

50 100 150 200 250 300 350 400 450 500 550 600
2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

4

Network Load (Erlang)

N
um

be
r

O
f H

op
s

P
er

 E
xe

cu
te

d
R

eq
ue

st

OpenFlow messages mapping
OpenFlow Extension
GMPLS/PCE

Fig. 14. Number of hops per request versus network load (NSF
topology).

Fig. 15. COST 239 topology (11 nodes and 26 links).

50 100 150 200 250 300 350 400 450 500 550 600
0

50

100

150

200

250

300

350

400

450

500

Network Load (Erlang)

A
ve

ra
ge

 E
st

ab
lis

hm
en

t T
im

e
(m

s)

OpenFlow messages mapping
OpenFlow Extension
GMPLS/PCE

Fig. 16. Lightpath establishment time (milliseconds) versus
network load (COST 239 topology).

50 100 150 200 250 300 350 400 450 500 550 600
0

5

10

15

20

25

30

35

40

45

50

Network Load (Erlang)

C
on

tr
ol

 P
la

ne
 T

ra
ffi

c
(P

ac
ke

t/s
)

OpenFlow messages mapping
OpenFlow Extension
GMPLS/PCE

Fig. 17. Number of control messages versus network load (COST
239 topology).

50 100 150 200 250 300 350 400 450 500 550 600
10

−3

10
−2

10
−1

10
0

Network Load (Erlang)

B
lo

ck
in

g
P

ro
ba

bi
lit

y

OpenFlow messages mapping
OpenFlow Extension
GMPLS/PCE

Fig. 18. Lightpath blocking probability versus network load
(COST 239 topology).

Bahnasy et al. VOL. 7, NO. 4/APRIL 2015/J. OPT. COMMUN. NETW. 311

establishment time decreases as the network load in-
creases because at high network load the average path
length is shorter, as shown in Fig. 19 (it decreases from
2.77 to 2.34 hops per request). Figure 17 depicts the control
messages for each solution. It confirms the result we got on
the NSF topology. It shows that OF solutions experience
the lowest control traffic. It also depicts that GMPLS
has the highest control traffic, as shown by the red line
in Fig. 17.

Figure 18 depicts the blocking probability and it also
confirms the result we got on the NSF topology. This figure
shows that the two OF-based solutions have almost the
same blocking probability values. On the other hand, the
GMPLS protocol experiences backward blocking, which
makes this technique have a higher blocking ratio with
low network load, as shown by the red line in Fig. 18.

VI. CONCLUSION

In this paper, we have presented a comparative study
between two OF solutions (OF Messages Mapping and
OF Extension) and the GMPLS approach. The overall fea-
sibility of these solutions was experimentally assessed, and
their performance was evaluated and compared with the
GMPLS approach using a custom-built simulator. The sim-
ulation results show that the OF Extension solution out-
performs the OF Messages Mapping and GMPLS
solutions since it experiences lower end-to-end lightpath
setup time and lower blocking ratio and control traffic com-
pared to GMPLS.

REFERENCES

[1] E. Mannie, “Generalized multi-protocol label switching
(GMPLs) architecture,” IETF RFC 3945, Oct. 2004 [Online].
Available: http://www.ietf.org/rfc/rfc3945.txt.

[2] L. Liu, T. Tsuritani, and I. Morita, “Experimental demonstra-
tion of OpenFlow/GMPLs interworking control plane for IP/
DWDMmulti-layer optical networks,” in IEEE 14th Int. Conf.
on Transparent Optical Networks (ICTON), 2012, pp. 1–4.

[3] Y. Zhao, J. Zhang, H. Yang, and Y. Yu, “Which is more suitable
for the control over large scale optical networks, GMPLs or
OpenFlow?” in Optical Fiber Communication Conf. and Expo.
and the Nat. Fiber Optic Engineers Conf. (OFC/NFOEC),
2013, pp. 1–3.

[4] “DRAGON: Dynamic Resource Allocation via GMPLS Optical
Networks” [Online]. Available: http://Dragon.maxgigapop.net.

[5] T. Lehman, J. Sobieski, and B. Jabbari, “DRAGON: A frame-
work for service provisioning in heterogeneous grid networks,”
IEEE Commun. Mag., vol. 44, no. 3, pp. 84–90, Mar. 2006.

[6] ONF: Open Networking Foundation [Online]. Available:
https://www.opennetworking.org/.

[7] OpenFlow [Online]. Available: https://www.opennetworking
.org/sdn‑resources/openflow.

[8] S. Das, G. Parulkar, N. McKeown, P. Singh, D. Getachew, and
L. Ong, “Packet and circuit network convergence with Open-
Flow,” in Optical Fiber Communication Conf. and the Nat.
Fiber Optic Engineers Conf. (OFC/NFOEC), Mar. 2010.

[9] L. Liu, T. Tsuritani, I. Morita, H. Guo, and J. Wu, “OpenFlow-
based wavelength path control in transparent optical
networks: A proof-of-concept demonstration,” in IEEE 37th
European Conf. and Exhibition on Optical Communication
(ECOC), 2011, pp. 1–3.

[10] L. Liu, D. Zhang, T. Tsuritani, R. Vilalta, R. Casellas, L. Hong,
I. Morita, H. Guo, J. Wu, R. Martinez, and R. Munoz, “First
field trial of an OpenFlow-based unified control plane for
multi-layer multi-granularity optical networks,” in Optical
Fiber Communication Conf. and Expo. and the Nat. Fiber
Optic Engineers Conf. (OFC/NFOEC), Mar. 2012.

[11] A. Giorgetti, F. Cugini, F. Paolucci, and P. Castoldi, “Open-
Flow and PCE architectures in wavelength switched optical
networks,” in 16th IEEE Int. Conf. on Optical Network Design
and Modeling (ONDM), 2012.

[12] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L.
Peterson, J. Rexford, S. Shenker, and J. Turner, “OpenFlow:
Enabling innovation in campus networks,” ACM SIGCOMM
Comput. Commun. Rev. vol. 38, no. 2, pp. 69–74, 2008.

[13] OpenFlow Switch Consortium, “OpenFlow switch specifica-
tion version 1.0.0,” 2009.

[14] Cisco Systems, Inc., “TL1 command reference for the Cisco
ONS 15808 DWDM system,” 2003.

[15] S. Das, “Extensions to the OpenFlow protocol in support of
circuit switching: Addendum to OpenFlow Protocol Specifica-
tion (v1.0) – Circuit Switch Addendum v0.3,” 2010.

[16] V. Tintor and J. Radunović, “Multihop routing and wave-
length assignment algorithm for optical WDM networks,”
Int. J. Netw. Commun., vol. 2, no. 1, pp. 1–10, 2012.

[17] Cisco ONS 15454 DWDM Reference Manual, Release 9.2,
2012 [Online]. Available: http://www.cisco.com/en/US/docs/
optical/15000r9_2/dwdm/reference/guide/454d92_ref.html/.

[18] D. Li, G. Bernstein, G. Martinelli, and Y. Lee, “A framework
for the control of wavelength switched optical networks
(WSONs) with impairments,” IETF RFC 6566, Mar. 2012.

[19] V. López, B. Huiszoon, J. Fernández-Palacios, O. G. de Dios,
and J. Aracil, “Path computation element in telecom net-
works: Recent developments and standardization activities,”
in 14th IEEE Conf. on Optical Network Design and Modeling
(ONDM), 2010, pp. 1–6.

[20] A. Giorgetti, N. Sambo, I. Cerutti, N. Andriolli, and P.
Castoldi, “Label preference schemes for lightpath provision-
ing and restoration in distributed GMPLs networks,” J. Light-
wave Technol., vol. 27, no. 6, pp. 688–697, 2009.

[21] GNU Zebra [Online]. Available: http://www.gnu.org/software/
zebra/.

[22] KOM RSVP Engine [Online]. Available: http://www.kom
.tu‑darmstadt.de/.

[23] GNU General Public License [Online]. Available: http://www
.gnu.org/copyleft/gpl.html.

50 100 150 200 250 300 350 400 450 500 550 600
2

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

3

Network Load (Erlang)

N
um

er
 O

f N
od

es
 P

er
 E

xe
cu

te
d

R
eq

ue
st

OpenFlow messages mapping
OpenFlow Extension
GMPLS/PCE

Fig. 19. Number of hops per request versus network load (COST
239 topology).

312 J. OPT. COMMUN. NETW./VOL. 7, NO. 4/APRIL 2015 Bahnasy et al.

[24] https://spaces.internet2.edu/download/attachments/57278477/
dragon‑vlsr‑implement‑v2.1b.pdf?version=1&modification
Date=1212654353149.

[25] SNMP4J API [Online]. Available: http://www.snmp4j.org/.
[26] iReasoning TL1 API [Online]. Available: http://ireasoning

.com/tl1api.shtml.

[27] National Science Foundation [Online]. Available: http://www
.nsf.gov.

[28] M. O’Mahony, “Results from the COST 239 project. Ultra-high
capacity optical transmission networks,” in 22nd European
Conf. on Optical Communication (ECOC), vol. 2, Sept. 1996,
pp. 11–18.

Bahnasy et al. VOL. 7, NO. 4/APRIL 2015/J. OPT. COMMUN. NETW. 313

