

Matlab component

 Creating a component to handle optical signals

OptiSystem Application Note

Matlab component – Creating a component to handle optical signals

1. Optical Attenuator Component

In order to create an optical component in Matlab for co-simulation with OptiSystem, first we need

to understand the optical signal format that OptiSystem can generate and the structure of that signal

launched into the Matlab workspace.

Following is an example to create an Optical Attenuator using the Matlab component. In this

example, first we introduce the signal format in OptiSystem, and then we show how to use Matlab to

process that signal.

Optical Sampled Signal – Figure 1 demonstrates the system layout for a WDM Transmitter. Using an

Optical Time Domain Visualizer and an Optical Spectrum Analyzer, the optical sampled signal can be

viewed in both frequency and time domain.

Figure 1: System layout and optical signal in frequency domain (spectrum) and time domain.

Using the MATLAB Library, we can add a Matlab component to the layout. By clicking on the

component properties, on the Main tab, we can choose the Sampled Signal in the time or frequency

domain. The number of input and output ports and also the format of these signals (Optical/Electrical) can

be defined in the Inputs and Outputs tab. The User Parameter tab is used to define the input parameters

of the component. The system layout and the Matlab component properties are shown in Figure 2.

Figure 2: System Layout and MATLAB Component Properties.

Figure 3 shows the structure of the launched signal in the Matlab workspace. The array editor

shows the structure of each signal, sampled signal structure, noise structure, Parameterized signals, and

Channels, however in this example the InputPort signal only has the Sampled and Channel structure,

which is a single channel at 193.41 THz (equivalent to 1550 nm).

Figure 3: Signal structure launched into the Matlab workspace.

As it was mentioned before, the signal can be launched into the Matlab workspace in time or

frequency domain (Matlab component parameter ‘Sampled Signal Domain’). Figure 4 demonstrates the

Samples signal in Frequency and time domain respectively. The noise structure follows the same

behavior.

Figure 4: Sampled signal structure for the signal in frequency and time domain.

In the above example the WDM transmitter has only one channel; however we can increase the

number of channels and launch them together into the input port of the Matlab component. As an

example the WDM transmitter in Figure 5 has 4 channels at 193.41 THz (equivalent to 1550 nm) with 200

GHz spacing.

Figure 5: 4-channel WDM layout.

In this case, there will be two possible structures for the input signal launched into the Matlab

workspace: (1) If the channels overlap in the spectrum domain, they are merged in one optical signal as

shown in the figure below.

(a) (b)

Figure 6: WDM optical signal in the (a) spectrum domain and (b) time domain.

If we look at the Sampled structure of the InputPort1 in the Matlab workspace, there is one array

for all four channels.

(a)

(b)

Figure 7: (a) Structure launched into the workspace and (b) Optical sampled signal structure.

(2) If the spectrum of the channels does not overlap, they are not merged in one optical signal, and we

will have four different arrays for the Sampled structure of InputPort1. Figure 8 demonstrates the non-

merged optical signal in time and frequency domain and Figure 9 shows the structure of this signal in

Matlab workspace.

Figure 8: WDM optical signal in the spectrum and time domain.

(a)

(b)

(c)

Figure 9: (a) Structure launched into the workspace, (b) Optical sampled signal structure and (c)
Optical sampled signal structure of one optical signal.

1.1 Matlab program

Based on the signal structure, the optical attenuator is implemented using the Matlab component.

In this case the matlab component is set to have one input port and one output port for optical signals.

The Matlab program (m-file) that simulates the attenuator is named ‘AttenuatorXY’ and that is the

command at ‘Run command’ parameter field. To be able to run this program the path for this file must be

in the Matlab search path; in this example the AttenuatorXY.m is located at ‘c:\temp’.

In order to see the file structure and the m-file, go to the Matlab component properties, on the

main tab, check ‘Load Matlab’ box and click OK. This will open the Matlab Command Window. In this

window, first choose the code directory by ‘cd (‘c:\temp’)’ command. Using the command ‘open

AttenuatorXY.m’, you can open the m-file in the Matlab Editor. The command ‘workspace’ opens the

Matlab workspace.

The only parameter necessary for this component is the attenuation constant, which can be

defined by the ‘Parameter0’ in the ‘User Parameters tab’. More parameters can be added by using ‘Add

Parameter’ button.

After defining the Matlab component properties, you can start writing the program (Matlab code)

that simulates the optical attenuator. Following is the Matlab code:

%

% This program simulates an attenuator

% Input parameter - Attenuation constant [dB]

%

% Create an output structure similar to the input

OutputPort1 = InputPort1;

% Attenuation constant

Attenuation = Parameter0;

% calculate the optical signal attenuation

if(InputPort1.TypeSignal == 'Optical')

 % verify how many sampled signals are in the structure

 [ls, cs] = size(InputPort1.Sampled);

 if(ls > 0)

 % caculate the attenuation at each signal

 for counter1=1:cs

 OutputPort1.Sampled(1, counter1).Signal = InputPort1.Sampled(1, counter1).Signal * exp(-0.2303 * Attenuation / 2);

 end

 end

end

If the optical signal has more then one-polarization component, then the following structures are

placed in the workspace for the frequency and time domain.

(a) (b)

Figure 10: Sampled signal structures in (a) frequency and (b) time domain for a signal with
polarization components at X and Y.

Therefore some changes are necessary in the original attenuator program. For this example we

included on attenuation constant for each polarization component. In this way the attenuator becomes a

polarization dependent component.

% This program simulates an attenuator

% Input parameter - Attenuation constant [dB]

%

% Create an output structure similar to the input

OutputPort1 = InputPort1;

% Attenuation constants

AttenuationX = Parameter0;

AttenuationY = Parameter1;

% calculate the optical signal attenuation

if(InputPort1.TypeSignal == 'Optical')

 % verify how many sampled signals are in the structure and

 % caculate the attenuation at each signal

 [ls, cs] = size(InputPort1.Sampled);

 if(ls > 0)

 for counter1=1:cs

 % Calculate the signal attenuated in the X polarization

 OutputPort1.Sampled(1,counter1).Signal(1,:) = InputPort1.Sampled(1,counter1).Signal(1,:) * exp(-0.2303 * AttenuationX / 2);

 % Calculate the signal attenuated in the Y polarization if it exists

 if(size(InputPort1.Sampled(1, counter1).Signal,1) > 1)
 OutputPort1.Sampled(1,counter1).Signal(2,:) = InputPort1.Sampled(1,counter1).Signal(2,:) * exp(-0.2303 * AttenuationY/ 2);

 end

 end

 end

end

Optical Parameterized Signal – Parameterized signals are time-averaged descriptions of the sampled
signals based on the information about the optical signal: average power, central frequency, and
polarization state. To select this option, in the layout parameter window, choose Signals tab, and check
the Parameterized option. The spectrum of the WDM transmitter with Parameterized signal is shown in
Figure 11.

Figure 11: Spectrum of parameterized signals.

The corresponding structures launched into the Matlab workspace are described in the following

figures.

(a)

(b)

Figure 12: (a) Structure launched into the workspace, (b) Optical parameterized signal structure.

Here we have modified the code to handle the parameterized signal:

%

% This program simulates an attenuator

% Input parameter - Attenuation constant X [dB]

% Input parameter - Attenuation constant Y [dB]

% create an output structure similar to the input

OutputPort1 = InputPort1;

% Attenuation constants

AttenuationX = Parameter0;

AttenuationY = Parameter1;

if(InputPort1.TypeSignal == 'Optical')

 [ls, cs] = size(InputPort1.Sampled);

 if(ls > 0)

 for counter1=1:cs

 % Calculate the signal attenuated in the x polarization

 OutputPort1.Sampled(1, counter1).Signal(1,:) = InputPort1.Sampled(1, counter1).Signal(1,:) * exp(-0.2303 *

AttenuationX / 2);

 % Calculate the signal attenuated in the Y polarization if it exists

 if(size(InputPort1.Sampled(1, counter1).Signal,1) > 1)

 OutputPort1.Sampled(1, counter1).Signal(2,:) = InputPort1.Sampled(1, counter1).Signal(2,:) * exp(-0.2303 *

AttenuationY / 2);

 end

 end

 end

 % verify how many parameterized signals are in the structure

 [lp, cp] = size(InputPort1.Parameterized);

 if(lp > 0)

 % Calculate the signal attenuated in the x polarization

 PowerTempX = InputPort1.Parameterized.Power .* (1 - InputPort1.Parameterized.SplittingRatio) * exp(-0.2303 *

AttenuationX);

 % Calculate the signal attenuated in the y polarization

 PowerTempY = InputPort1.Parameterized.Power .* InputPort1.Parameterized.SplittingRatio * exp(-0.2303 *

AttenuationY);

 % Calculate the new total optical power at the signal

 OutputPort1.Parameterized.Power = PowerTempX + PowerTempY;

 % Calculate the new Splitting Ratio at the signal

 OutputPort1.Parameterized.SplittingRatio = PowerTempY ./ (PowerTempX + PowerTempY);

 end

end

Noise bins Signal – Noise bins represent the noise by average spectral density in two

polarizations using coarse spectral resolution. By enabling RIN in the WDM transmitter properties, RIN

noise can be generated and added to the WDM signal. Figure 13 shows the noise spectra at the

transmitter output.

Figure 13 – Noise bins signals.

The corresponding structures launched into the workspace are described by the following figures.

(a)

(b)

Figure 14: (a) Structure launched into the workspace, (b) Optical Noise signal structure.

A new code is included in the program to handle the Noise bins signal.

%

% This program simulates an attenuator

% Input parameter - Attenuation constant X[dB]

% Input parameter - Attenuation constant Y [dB]

% create an output structure similar to the input

OutputPort1 = InputPort1;

% Attenuation constants

AttenuationX = Parameter0;

AttenuationY = Parameter1;

if(InputPort1.TypeSignal == 'Optical')

 [ls, cs] = size(InputPort1.Sampled);

 if(ls > 0)

 for counter1=1:cs

 % Calculate the signal attenuated in the x polarization

 OutputPort1.Sampled(1, counter1).Signal(1,:) = InputPort1.Sampled(1, counter1).Signal(1,:) * exp(-0.2303 *

AttenuationX / 2);

 % Calculate the signal attenuated in the Y polarization if it exists

 if(size(InputPort1.Sampled(1, counter1).Signal,1) > 1)

 OutputPort1.Sampled(1, counter1).Signal(2,:) = InputPort1.Sampled(1, counter1).Signal(2,:) * exp(-0.2303 *

AttenuationY / 2);

 end

 end

 end

 % verify how many parameterized signals are in the structure

 [lp, cp] = size(InputPort1.Parameterized);

 if(lp > 0)

 % Calculate the signal attenuated in the x polarization

 PowerTempX = InputPort1.Parameterized.Power .* (1 - InputPort1.Parameterized.SplittingRatio) * exp(-0.2303 *

AttenuationX);

 % Calculate the signal attenuated in the y polarization

 PowerTempY = InputPort1.Parameterized.Power .* InputPort1.Parameterized.SplittingRatio * exp(-0.2303 *

AttenuationY);

 % Calculate the new total optical power at the signal

 OutputPort1.Parameterized.Power = PowerTempX + PowerTempY;

 % Calculate the new Splitting Ratio at the signal

 OutputPort1.Parameterized.SplittingRatio = PowerTempY ./ (PowerTempX + PowerTempY);

 end

 % verify how many noise bins are in the structure

 [ln, cn] = size(InputPort1.Noise);

 if(ln > 0)

 % Calculate the signal attenuated in the x polarization

 OutputPort1.Noise.Power(1,:) = InputPort1.Noise.Power(1,:) * exp(-0.2303 * AttenuationX);

 % Calculate the signal attenuated in the y polarization

 OutputPort1.Noise.Power(2,:) = InputPort1.Noise.Power(2,:) * exp(-0.2303 * AttenuationY);

 end

end

This was an example demonstrating all optical signals: Sampled, Parameterized and Noise bins.

However, if the user is only working with one kind of signal (e.g.: Sampled signal), then it is not necessary

to include the code of the other signals.

2. Running in debug mode

There is also the possibility to run the simulation in OptiSystem and work with Matlab on debug

mode. The procedure is the same as opening the m-file. First, you open the Matlab component and check

‘Load Matlab’, and click OK.

This opens the Matlab Command Window. In the command window, first choose the code

directory by ‘cd (‘c:\temp’)’ command, then using the command ‘open ElectricalAttenuator.m’, you can

open the m-file in the Matlab Editor. See figure below.

In the Matlab editor, user can introduce breakpoints at any line in the program. After saving the

file, the user has just to run the project at OptiSystem and the simulation will stop in the breakpoint

defined before. The simulation can be done step by step on Matlab after this.

This feature is very interesting, since the user can go through the Matlab program step by step

and see if the calculation is OK. It also allows seeing all variables while running the simulation in the

Matlab workspace.

Optiwave
7 Capella Court
Ottawa, Ontario, K2E 7X1, Canada

Tel.: 1.613.224.4700
Fax: 1.613.224.4706

E-mail: support@optiwave.com
URL: www.optiwave.com

Forum: www.optiwave.us

mailto:support@optiwave.com
http://www.optiwave.com/
http://www.optiwave.com/

